Константа скорости реакции. понятие о порядке реакции по реагенту

От каких факторов она зависит?Константа скорости реакции (удельная скорость реакции) - коэффициент пропорциональности в кинетическом уравнении.Физический смысл константы скорости реакции k следует из уравнения закона действующих масс: k численно равна скорости реакции при концентрации каждого из реагирующих веществ равной 1 моль/л.Константа скорости реакции зависит от температуры, от природы реагирующих веществ, от катализатора, но не зависит от их концентрации. Для реакции вида 2А+2В->3C+D скорость образования продуктов реакции и скорость расходования реагентов могут быть представлены как: d[A]/(2*dt)=d[B]/(2*dt)=d[C]/(3*dt)=d[D]/dt Таким образом, чтобы избежать использования нескольких форм записи скорости для одной и той же реакции используют химическую переменную, которая определяет степень протекания реакции и не зависит от стехиометрических коэффициентов: ξ=(Δn)/ν где ν - стехиометрический коэффициент. Тогда скорость реакции: v=(1/V)*dξ/dt где V - объем системы.

57.Как зависит скорость хим.реакции от температуры?Правило Вант-Гоффа,Уравнение Аррениуса.
Зависимость скорости реакции от температуры приближенно определяется эмпирическим правилом Вант-Гоффа: при изменении температуры на каждые 10 градусов скорость большинства реакций изменяется в 2-4 раза.

Математически правило Вант-Гоффа выражается так:

где v(T2) и v(T1) - скорости реакций, соответственно при температурах Т2 и T1 (T2> T1);

γ-температурный коэффициент скорости реакции.

Значение γ для эндотермической реакции выше, чем для экзотермической. Для многих реакций γ лежит в пределах 2-4.

Физический смысл величины γ заключается в том, что он показывает, во сколько раз изменяется скорость реакции при изменении температуры на каждые 10 градусов.

Поскольку скорость реакции и константа скорости химической реакции прямопропорциональны, то выражение (3.6) часто записывают в следующем виде:

где k(T2), k(T1)- константы скорости реакции соответственно

при температурах T2 и T1;

γ -температурный коэффициент скорости реакции.

Уравнение Аррениуса . В 1889 г. шведский ученый С. Арре-1иус на основании экспериментов вывел уравнение, которое на-звано его именем

где k - константа скорости реакции;

k0 - предэксноненциальный множитель;

е - основание натурального логарифма;

Ea - постоянная, называемая энергией активации, определяемая природой реагентов:

R-универсальная газовая постоянная, равная 8,314 Дж/моль×К.

Значения Еa для химических реакций лежат в пределах 4 - 400 кДж/моль.

Многие реакции характеризуются определенным энергети-ческим барьером. Для его преодоления необходима энергия актации - некоторая избыточная энергия (по сравнению со вредней энергией молекул при данной температуре), которой должны обладать молекулы для того, чтобы их столкновение было эффективным, т. е. привело бы к образованию нового ве-щества. С ростом температуры число активных молекул быстро увеличивается, что и приводит к резкому возрастанию скорости реакции.

В общем случае, если температура реакции изменяется от Т1 до Т2, уравнение (3.9) после логарифмирования примет вид:

.

Это уравнение позволяет рассчитывать энергию активации реакции при изменении температуры от Т1 до Т2.

Скорость химических реакций возрастает в присутствии катализатора. Действие катализатора заключается в том, что он образует с реагентами неустойчивые промежуточные соединения (активированные комплексы), распад которых приводит к. образованию продуктов реакции. При этом энергия активации, понижается, и активными становятся молекулы, энергия которых была недостаточна для осуществления реакции в отсутствие, катализатора. В результате возрастает общее число активных£ молекул и увеличивается скорость реакции.

Вопрос№3

От каких факторов зависит константа скорости химической реакции?

Константа скорости реакции (удельная скорость реакции ) - коэффициент пропорциональности в кинетическом уравнении.

Физический смысл константы скорости реакции k следует из уравнения закона действующих масс: k численно равна скорости реакции при концентрации каждого из реагирующих веществ равной 1 моль /л.

Константа скорости реакции зависит от температуры, от природы реагирующих веществ, от присутствия в системе катализатора, но не зависит от их концентрации.

1. Температура. При повышении температуры на каждые 10°C скорость реакции возрастает в 2-4 раза (Правило Вант-Гоффа) . При увеличении температуры от t1 до t2 изменение скорости реакции можно рассчитать по формуле: (t2 - t1) / 10 Vt2 / Vt1 = g (где Vt2 и Vt1 - скорости реакции при температурах t2 и t1 соответственно; g- температурный коэффициент данной реакции) . Правило Вант-Гоффа применимо только в узком интервале температур. Более точным является уравнение Аррениуса: k = A e –Ea/RT где A - постоянная, зависящая от природы реагирующих веществ; R - универсальная газовая постоянная ; Ea - энергия активации, т. е. энергия, которой должны обладать сталкивающиеся молекулы, чтобы столкновение привело к химическому превращению. Энергетическая диаграмма химической реакции. Экзотермическая реакция Эндотермическая реакция А - реагенты, В - активированный комплекс (переходное состояние) , С - продукты. Чем больше энергия активации Ea, тем сильнее возрастает скорость реакции при увеличении температуры. 2. Поверхность соприкосновения реагирующих веществ. Для гетерогенных систем (когда вещества находятся в разных агрегатных состояниях) , чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ - путем их растворения. 3. Катализ. Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами. Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений. При гомогенном катализе реагенты и катализатор составляют одну фазу (находятся в одном агрегатном состоянии) , при гетерогенном катализе - разные фазы (находятся в различных агрегатных состояниях) . Резко замедлить протекание нежелательных химических процессов в ряде случаев можно добавляя в реакционную среду ингибиторы (явление "отрицательного катализа").

Вопрос№4

Сформулируйте и запишите закон действующих масс для реакции:

2 NO+O2=2NO2

ЗАКОН ДЕЙСТВУЮЩИХ МАСС: скорость химической реакции пропорциональна произведению концентраций реагирующих веществ. для реакции 2NO + O2 2NO2, закон действующих масс запишется так: v=kС2(NO)·С (O2), где k – константа скорости, зависящая от природы реагирующих веществ и температуры. Скорость в реакциях с участием твердых веществ определяется только концентрацией газов или растворенных веществ: С+О2=СО2, v =kCO2

Реакция первого порядка [k] = .

Реакция второго порядка [k] = [л/моль∙t]

Реакция n - го порядка [k] = [моль 1- n ∙ л n -1 ∙ t - t ]

III. Температура. С увеличением температуры увеличивается кинетическая энергия молекул, а, следовательно и скорость их движения. Увеличение скорости приводит к увеличению числа столкновений молекул и, как следствие этого, к увеличению скорости реакции. Экспериментально было установлено, что при увеличении температуры на каждые 10 0 скорость химической реакции возрастает в 2-4 раза:

V 2 = V 1 ∙γ (T 2 – T 1)/10 или V 2 /V 1 = γ (T 2 – T 1)/10

где V 1 –скорость реакции при температуре Т 1 , V 2 – скорость реакции при температуре Т 2 ,

γ – температурный коэффициент скорости реакции, его значение для большинства неорганических реакций варьируется от двух до четырех. Эта закономерность носит название правила Вант-Гоффа .

При увеличении температуры скорость реакции увеличивается, но при этом концентрации реагирующих веществ не меняются. Следовательно, меняется, увеличивается константа скорости с ростом температуры. Зависимость константы скорости химической реакции от температуры описывается уравнением Аррениуса:

k = k o ∙e -Ea /RT

где k o – коэффициент учитывающий число активных столкновений, R – универсальная газовая постоянная, Т – температура, Е а – энергия активации.

Энергия активации – это энергия молекул, при которой каждое столкновение приводит к протеканию химической реакции.

Физический смысл энергии активации легко понять из рисунка.

прод.р-ции

По оси ординат отложена сумма энтальпий исходных веществ и продуктов реакции, а по оси абсцисс – направление реакции. В этом случае разность между суммой энергий исходных веществ и максимумом кривой дает величину энергии активации прямой реакции (E a), а разность между суммой энергий продуктов реакции и этим же максимумом – энергию активации обратной реакции (E " a).

IV. Катализатор. Катализаторами называют вещества, которые изменяют скорость химической реакции, но не входят в стехиометрическое уравнение реакции. Катализаторы могут, как увеличивать скорость химической реакции, так и уменьшать ее. Вещества, которые уменьшают скорость реакции, называются ингибиторами . Катализаторы принимают самое непосредственное участие в химической реакции, но по окончанию реакции могут быть выделены из реакционной смеси в исходном количестве. Для катализаторов характерна селективность, т.е. способность влиять на прохождение реакции в определенном направлении:

4 NH 3 + 3 O 2 = 6 H 2 O +2 N 2 (без катализатора)

4 NH 3 + 5 O 2 = 4 NO + 6 H 2 O (катализатор Pt)

Co, Rh→ CH 3 CH 2 CH 2 OH + CH 3 CH OH CH 3

Особое место занимают биокатализаторы – ферменты, представляющие собой белки. Они оказывают влияние на скорость строго определенных реакций, т.е. обладают высокой селективностью. Они способны увеличивать скорость реакций в миллиарды и триллионы раз при комнатной температуре. При повышении температуры они теряют свою активность, т.к. происходит денатурация белков.

    константа скорости реакции - – скорость химической реакции в условиях, когда произведение концентраций реагирующих веществ равно 1 моль/л. Общая химия: учебник / А. В. Жолнин Константа скорости реакции – коэффициент пропорциональности в дифференциальном кинетическом… … Химические термины

    константа скорости реакции - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN reaction constant …

    константа скорости реакции - reakcijos greičio konstanta statusas T sritis chemija apibrėžtis Reakcijos, kurios reaguojančiųjų medžiagų koncentracijos lygios vienetui, greitis. atitikmenys: angl. rate constant; reaction constant rus. константа скорости реакции; удельная… … Chemijos terminų aiškinamasis žodynas

    константа скорости реакции - reakcijos spartos konstanta statusas T sritis Standartizacija ir metrologija apibrėžtis Reakcijos, kurios reaguojančių medžiagų koncentracijos yra lygios vienetui, sparta. atitikmenys: angl. reaction rate constant vok. Reaktionskonstante, f rus.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    Химической реакции ее основная кинетическая характеристика; коэффициент пропорциональности в кинетическом уравнении, связывающем скорость реакции с концентрациями реагирующих веществ и их стехиометрическими коэффициентами. Для мономолекулярных… … Большой Энциклопедический словарь

    константа скорости каталитической реакции - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN catalytic coefficient … Справочник технического переводчика

    Химическая реакции, её основная кинетическая характеристика; коэффициент пропорциональности в кинетическом уравнении, связывающем скорость реакции с концентрациями реагирующих веществ и их стехиометрическими коэффициентами. Для мономолекулярных… … Энциклопедический словарь

    константа скорости химической реакции - изменение количества (концентрации) вещества, вступающего в реакцию или образующегося в ходе процесса, в единицу времени при данной температуре и концентрациях всех компонентов, равных единице: d[A]/dt =… … Энциклопедический словарь по металлургии

    Хим. реакции, её основная кинетич. характеристика; коэф. пропорциональности в кинетич. ур нии, связывающем скорость реакции с концентрациями реагирующих в в и их стехиометрич. коэффициентами. Для мономолекулярных реакций К. с. имеет размерность с … Естествознание. Энциклопедический словарь

    Относительные константы скорости реакции CH 3 I + Cl - в разных растворителях при 25 °С (по Паркеру) - Растворитель Относительная константа скорости CH3OH 1 HCONH2 12,5 HCONHCH3 … Химический справочник

Раздел 5. КИНЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ И КАТАЛИЗ.

Далеко не всегда термодинамически возможные реакции осуществляются в действительности. Это связано с тем, что в термодинамике нет параметра времени, поэтому она не дает ответ, как скоро наступит данное состояние. Определение условий, при которых термодинамически возможные реакции будут протекать с достаточной скоростью, составляет одну из основных задач химической кинетики. В кинетике вводится фактор времени, который в термодинамике не рассматривается.

Химическая кинетика - это учение о закономерности протекания химического процесса во времени или учение о механизмах и скорости протекания химических реакций.

Совокупность стадий, из которых складывается химическая реакция, называется механизмом или схемой химической реакции.

Скорость химической реакции.

Под скоростью химической реакции понимают изменение числа молей реагирующих веществ в единицу времени в единице объема.

Различают скорость среднюю (u ср ) и истинную (u ).

Средняя скорость - изменение концентрации реагирующих веществ за данный промежуток времени:

u ср = ± (n 2 – n 1) / V(t 2 - t 1) = ± Dn / V Δt = ± Δс / Δt.

Отношение Δс/Δt может быть как положительным, так и отрицательным. Скорость можно измерить, следя за уменьшением концентрации исходного соединения, тогда перед отношением ставим знак минус, так как скорость всегда величина положительная. Если скорость выражать через концентрацию получающего вещества, то знак плюс:

- Δс А / Δt= + Δс В /Δt.

Можно относить изменение концентрации к бесконечно малому промежутку времени (t 2 -t 1 → 0), определяя истинную скорость реакции в данный момент как производную от концентрации по времени (u = ±dс/dt).

- dс А /dt = + dс В /dt

Зависимость скорости реакции от концентрации.

Основным постулатом химической кинетики является закон действующих масс, установленный Гульдбергом и Ваге. Рассмотрим химическую реакцию:

m 1 A + m 2 B → m 3 C + m 4 D.

Уравнение, описывающее зависимость скорости химической реакции от концентрации компонентов реакционной смеси, называется кинетическим уравнением химической реакции.



Кинетическое уравнение рассматриваемой реакции:

u = kс А m 1 ´с B m 2 ,

где k - коэффициент пропорциональности (константа скорости).

Закон действующих масс:скорость химической реакции в каждый момент времени прямо пропорциональна произведению концентраций реагирующих веществ к данному моменту времени в степенях, отвечающих стехиометрическим коэффициентам реакции (в простейшем случае).

В большинстве случаев рассчитывают не скорость, а константу скорости. Если с А = с В = 1 моль/л, то u = k.

Физический смысл константы скорости: константа скорости химической реакции численно равна скорости реакции при условии, что концентрации реагирующих веществ постоянны и равны единице. Константа скорости не зависит от концентрации, зависит от температуры, природы растворителя и от присутствия катализатора.

Все реакции являются кинетически двусторонними или кинетически обратимыми. Химическая реакция обратима, когда продукты реакции могут взаимодействовать между собой, образуя исходные вещества. Практически же обратная реакция может быть настолько медленной по сравнению с прямой, что с любой разумной точностью обратимостью реакции можно пренебречь и рассматривать реакцию как необратимую или одностороннюю. Строго говоря, обратимыми являются любые химические реакции:

m 1 A 4 +m 2 B « m 3 C+m 4 D

u = u 1 - u 2 = k 1 с А m 1 ´с B m 2 - k 2 с С m 3 ´с D m 4,

В момент химического равновесия u 1 = u 2 , т.е

k 1 с А m 1 ´с B m 2 = k 2 с С m 3 ´с D m 4,

К =k 1 / k 2 =с С m 3 ´с D m 4 / с А m 1 ´с B m 2

где К - константа химического равновесия, равная отношению константы скорости прямой реакции к константе скорости обратной реакции.

Классификация реакций по молекулярности и по порядку.

При изучении кинетики химические реакции различаются по молекулярности и по порядку.

Молекулярность реакции определяется числом молекул, участвующих одновременно в той стадии, которая определяет скорость всей реакции (самая медленная). По этому признаку реакции разделяют на моно-, би- и тримолекулярные. Реакций же более высокой молекулярности практически неизвестно, так как вероятность встречи четырех молекул ничтожно мала.

Порядок реакций определяется суммой показателей степеней при концентрациях в выражении закона действующих масс. Различают полный (общий) порядок реакции и частный (по каждому реагенту). Сумма показателей степеней, в которых концентрации всех исходных веществ входят в кинетическое уравнение, определяет общий порядок. Различают реакции нулевого, первого, второго, третьего и дробного порядков.

Совпадение молекулярности с порядком наблюдается только в простейших случаях, когда реакция протекает в одну стадию:

2NO + H 2 ↔ N 2 O + H 2 O,

общий порядок - 3, молекулярность - 3.

5.3.1. Уравнение односторонней реакции первого порядка .

Рассмотрим химическую реакцию: А → В.

u = kс = - dс/dt.

Разделим переменные: -dс/с = k dt, проинтегрируем

Lnс = kt + const,

если τ = 0 (начальный момент реакции), то cоnst = ln с 0 , т.е.

Ln с = kt - ln с 0 ,

ln с 0 - ln с = kt или ln с 0 /с = kt,

k = (1/t)´ ln с 0 /с.

Обозначим х - степень превращения исходного вещества: х = с 0 – с.

k = (1/t) ´ln с 0 /(с 0 - х),

размерность - [время -1 ].

Константа скорости реакции первого порядка не зависит от концентрации. Можно подставлять в полученное уравнение концентрации (моль/л), можно число молей. Вместо “с 0 ” и “(с 0 - х)” можно подставлять любые величины, пропорциональные концентрации (электропроводность, плотность, вязкость и др.).

Для характеристики скорости реакции первого порядка наряду с константой скорости часто пользуются величиной, называемой периодом полураспада.

Период полураспада (t 1/2) - промежуток времени, в течение которого реагирует половина взятого количества вещества:

t 1/2 = (1/k)´ ln с 0 /(с 0 - х), где х = 1/2с 0.

Получаем:

t 1/2 = ln2/k = 0,693/k.

Период полураспада не зависит от исходных концентраций, а зависит от константы скорости, т.е. он является характеристикой реакции первого порядка.

К реакциям первого порядка относятся реакции радиоактивного распада, изомеризации, большинство реакций гидролиза. При большом избытке одного из реагирующих веществ по сравнению с другими, его концентрация остается практически постоянной в течение реакции. В таком случае порядок реакции будет на единицу меньше, чем следовало бы ожидать по стехиометрическому уравнению.

Бимолекулярные реакции, у которых порядок реакции, вследствие избытка одного из реагентов понижается на единицу, называется псевдомолекулярными.

Пример, реакция гидролитического разложения сахара в разбавленном водном растворе (инверсия сахара):

C 12 H 22 O 11 + H 2 O ↔ C 12 H 22 O 11 + C 12 H 22 O 11

cахароза глюкоза фруктоза

u = k[сахароза]´,

u = k* [сахароза], где k* = k´.

Это пример реакции псевдопервого порядка.

Уравнение односторонней реакции второго порядка.

А + В → С + D

Пример: H 2 + J 2 = 2HJ;

2HJ = H 2 + J 2 ;

CH 3 COOC 2 H 5 + NaOH = CH 3 COONa + C 2 H 5 OH.

Dс/dt = kс 1 ´с 2

При с 1 = с 2 получаем: -dс/dt =kс 2 или -dс/ с 2 = k dt. Интегрируем:

1/с = kt + const.

При t = 0 → const = 1/с 0 .

1/с - 1/с 0 = kt или (с 0 – с)/с´с 0 = kt;

с 0 - с = x, где х – степень превращения; с = с 0 - x;

х /с 0 (с 0 - с) = kt;

k = (1/ t)´,

размерность - [время -1 ´концентрация -1 ].

Константа скорости реакции второго порядка зависит от размерности концентрации.

Период полураспада: t 1/2 = (1/ k) , где x = 1/2с 0 , тогда

t 1/2 = 1/ kс 0 .

Период полураспада зависит от начальной концентрации и не является характеристикой реакции второго порядка.

Уравнение реакции нулевого порядка.

Скорость химической реакции не зависит от концентрации реагирующих веществ (реакции на границе раздела фаз, лимитирующим является процесс диффузии):

Dс/dt = kс 0 ; или -dс = k dt.

Интегрируем, получаем: -с = kt + const.

При t = 0 → const = -с 0 . Получаем: -с = kt - с 0 ;

k = (c 0 - c) /t = x/t,

размерность - [концентрация ´время -1 ].

Период полураспада:

t 1/2 = c 0 /2k

Методы определения порядка реакции и константы скорости.

В кинетике реакций простых и сложных типов решаются главным образом следующие задачи:

1. Прямая задача: известен порядок реакции и ее константа скорости. Требуется найти концентрацию какого-либо из исходных веществ или продуктов реакции в определенный момент времени или найти время, за которое концентрация какого-либо из реагентов или продуктов реакции достигает определенного значения.

2. Обратная задача: получены экспериментальные данные по кинетике ранее не изученной реакции. Требуется определить порядок реакции и константу скорости.

Для определения порядка реакции необходимо иметь экспериментальные данные об изменении концентрации реагирующих веществ со временем:

с 0 с 1 с 2 с 3 с 4 …..
t 0 t 1 t 2 t 3 t 4 …..

1. Метод подбора уравнений.

Метод состоит в подстановке экспериментальных данных по концентрации веществ для каждого момента от начала реакции в кинетические уравнения различных порядков (этот прием ничего не дает, если порядок реакции превышает 3 или является дробным):

k = (с 0 - с) /t = x/t (нулевой порядок);

k = (1/t) lnс 0 /с (первый порядок);

k = (1/t) x /с 0 с (второй порядок).

Порядок реакции будет соответствовать тому уравнению кинетики, для которого при различных начальных концентрациях исходных веществ и в различные моменты времени при заданной температуре константа скорости будет величиной постоянной.

2. Графические интегральные методы.

нулевой порядок: первый порядок второй порядок

Рис. 5.1. Изменение концентрации во времени для реакций

различных порядков.

Находят такую функцию от концентрации, отложив которую на графике, в зависимости от времени, получают прямую линию (рис. 5.1.).

3. По периоду полупревращения.

По зависимости периода полупревращения от начальной концентрации:

нулевой порядок: t 1/2 = с 0 /2k;

первый порядок: t 1/2 = 0,693/ k;

второй порядок: t 1/2 = 1 / kс 0 .

В общем виде:

t 1/2 ≈ 1 /k с 0 n-1 .

Проводят опыты при двух различных начальных концентрациях (с 0)’ и (с 0)”:

(t 1/2) ’ = 1 /k (с 0) 1 n-1 (1)

(t 1/2)” = 1 /k (с 0) 2 n-1 (2)

Разделим (1) на (2):

(t 1/2) ’ / (t 1/2)” = (с 0) 2 n-1 / (с 0) 1 n-1 .

Прологарифмируем:

lg(t 1/2) ’ / (t 1/2)” = (n-1) ´ lg[(с 0) 2 /(с 0) 1 ],

n = 1 + / .

4. Дифференциальный метод (метод Вант-Гоффа).

Используют зависимость скорости реакции от концентрации при условии равенства концентраций всех исходных веществ (рис. 5.2.): u = kс n . Логарифмируем данное выражение: lgu = lgk + nlgс.

Рис. 5.2. Зависимость скорости реакции от концентрации.

5. Интегральный метод Вант-Гоффа (по зависимости скорости реакции от начальной концентрации в первые моменты времени - 10-15 с).

u = k (c 0 - x) n = k c 0 n ,

Так как в первый момент времени x ≈ 0.

Проводят опыт с различными начальными концентрациями.

u 1 = k c 1 n (1)

u 2 = k c 2 n (2)

Делим уравнение (1) на уравнение (2): u 1 / u 2 = (c 1 / c 2) n .

Логарифмируем:

n = (lgu 1 - lgu 2) / (lgс 1 -lgс 2),

где с 1 и с 2 берутся средними на исследуемом участке реакции, соответствующем Δt.

6. Метод изолирования Оствальда.

Запишем кинетическое уравнение реакции: u = kс A n 1 ´с B n 2 ´с с n 3 .

Увеличиваем концентрацию “В” и ”С” больше чем в 10 раз. Порядок по этим веществам будет нулевым, их концентрации не будут меняться. Определяем “n 1 ” одним из тех методов, которые были рассмотрены выше. Так же поступаем, определяя порядок реакции по веществам В и С, т.е. n 2 и n 3 .

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!