Принцип даламбера теоретической механики. Аналитическая механика материальной точки и динамика твердого тела эйлера Принцип даламбера примеры решения

Область применения принципа Даламбера – это динамика несвободных механических систем. Даламбер предложил оригинальный метод решения задач динамики, позволяющий использовать достаточно простые уравнения статики. Он писал: «Данное правило приводит все задачи, относящиеся к движению тел, к более простым задачам о равновесии».

В основу данного метода положены силы инерции. Введем это понятие.

Силой инерции называют геометрическую сумму сил противодействия движущейся материальной частицы телам, сообщающим ей ускорение.

Поясним это определение. На рис. 15.1 показана материальная частица М , взаимодей-ствующая с n материальными объектами. На рис. 15.1 показаны силы взаимодействия: без

щие на самом деле не на частицу, а на тела с массами m 1 , …, m n . Ясно, что равнодейст-вующая этой системы сходящихся сил противодействия, R ’ =ΣF’ k , по модулю равна R и направлена противоположно ускорению, т.е.: R ’ =-ma. Данная сила и является силой инерции, о которой говорится в определении. В дальнейшем будем ее обозначать буквой Ф , т.е.:

В общем случае криволинейного движения точки ускорение представляет собой сумму двух составляющих:

Из (15.4) видно, что составляющие силы инерции направлены противоположно направлениям соответствующих составляющих ускорения точки. Модули составляющих силы инерции определяют по следующим формулам:

где ρ – радиус кривизны траектории точки.

После определения силы инерции рассмотрим принцип Даламбера .

Пусть дана механическая система, состоящая из n материальных точек (рис. 15.2). Возьмем одну из них. Все силы, действующие на k -ю точку, классифицируем по группам:

Выражение (15.6) отражает сущность принципа Даламбера, записанного для одной мате-риальной точки. Повторяя проделанные выше действия по отношению к каждой точке механической системы, можно записать систему n уравнений, подобных (15.6), что и будет являться математической записью принципа Даламбера применительно к механи-ческой системе. Таким образом, сформулируем принцип Даламбера для механической системы:

Если к каждой точке механической системы в любой момент времени, кроме фактически действующих на нее внешних и внутренних сил, приложить соответствующую силу инерции, то вся система сил будет приведена в равновесное состояние и к ней можно будет применять все уравнения статики.

Следует иметь в виду:

Принцип Даламбера можно применять для динамических процессов, протекающих в

инерциальных системах отсчета. Этого же требования, как отмечалось ранее, следует придерживаться и при применении законов динамики;

Силы инерции, которые, согласно методики принципа Даламбера, необходимо прило-

жить к точкам системы, на самом деле на них не действуют. Действительно, если бы они существовали, то вся совокупность сил, приложенных к каждой точке, находилась бы в равновесии, и отсутствовала бы сама постановка задачи динамики.

Для равновесной системы сил можно записать следующие уравнения:

т.е. геометрическая сумма всех сил системы, включая и силы инерции, и геометрическая сумма моментов всех сил относительно произвольного центра равны нулю.

Учитывая свойства внутренних сил системы:

выражения (15.7) можно заметно упростить.

Вводя обозначения главного вектора

и главного момента

выражения (15.7) предстанут в виде:

Уравнения (15.11) являются прямым продолжением принципа Даламбера, но не содержат внутренних сил, что является их несомненным преимуществом. Их использование наиболее эффективно при исследовании динамики механических систем, состоящих из твердых тел.

Принцип Даламбера применяется при решении первой основной задачи динамики несвободной точки, когда известны движение точки и действующие на неё активные силы, а отыскивается возникающая реакция связи.

Запишем основное уравнение динамики несвободной точки в инерциальной системе отсчёта:

Перепишем уравнение в виде:

.

Обозначив , получим

, (11.27)

где вектор называется Даламберовой силой инерции .

Формулировка принципа: В каждый момент движения несвободной материальной точки активная сила и реакция связи уравновешиваются Даламберовой силой инерции .

Проектируя векторное уравнение (11.27) на какие-либо координатные оси, мы получим соответствующие уравнения равновесия, пользуясь которыми можно находить неизвестные реакции.

Спроектируем уравнение (11.27) на естественные оси:

(11.28)

где называется центробежной силой инерции, всегда направленной в отрицательную сторону главной нормали; .

Замечания:

1). В действительности к точке помимо сил и каких-либо других физических сил не приложено и три силы не составляют уравновешенную систему сил. В этом смысле Даламберова сила инерции является фиктивной силой, условно прикладываемой к точке.

2). Принцип Даламбера следует рассматривать как удобный методический прием, позволяющий задачу динамики свести к задаче статики.

Пример 1. Определим реакцию связи, действующую на лётчика при выходе самолёта, движущегося в вертикальной плоскости, из пикирующего полёта (рис.11.5).

На лётчика действует сила тяжести и реакция сидения . Применим принцип Даламбера, присоединив к этим силам Даламберову силу инерции:

(11.29)

Запишем уравнение (11.29) в проекциях на нормаль :

(11.30)

где r - радиус окружности при выходе самолёта на горизонтальный полёт,

Максимальная скорость самолёта в этот момент.

Из уравнения (11.30)

(11.31)

Пример 2. Определим теперь ту же реакцию, действующую на лётчика в момент выхода из режима набора высоты (рис.11.6).

Относительное движение материальной точки

Если системы отсчета движутся относительно инерциальной системы отсчета не поступательно, либо неравномерно или криволинейно движутся начала их координат, то такие системы отсчета являются неинерциальными . В этих системах отсчета аксиомы А 1 и А 2 не соблюдаются, но из этого не следует, что в динамике исследуются лишь движения, происходящие в инерциальных системах отсчета. Рассмотрим движение материальной точки в неинерциальной системе координат, если известны силы, действующие на материальную точку, и задано движение неинерциальной системы отсчета относительно инерциальной системы отсчета. В дальнейшем инерциальная система отсчета будет называться неподвижной, а неинерциальная – подвижной системой отсчета. Пусть - равнодействующая активных сил, действующих на точку, а - равнодействующая реакции связей; - неподвижная система координат; - подвижная система координат.

Рассмотрим движение материальной точки М (рис. 11.7), не связанной жестко с подвижной системой координат, а движущейся по отношению к ней. Это движение точки в кинематике называли относительным, движение точки относительно неподвижной системы координат – абсолютным, движение подвижной системы координат – переносным.


Основной закон динамики для абсолютного движения точки М будет иметь вид

(11.33)

где - абсолютное ускорение точки.

На основании теоремы сложения ускорений кинематики (теоремы Кориолиса) абсолютное ускорение складывается из относительного, переносного и кориолисова ускорений

. (11.34)

Подставляя (11.34) в (11.33), получим

и после переноса и ввода обозначений

(11.35)

где ; вектор называют переносной силой инерции; - кориолисовой силой инерции.

Равенство (11.35) выражает закон относительного движения точки. Следовательно, движение точки в неинерциальной системе отсчета можно рассматривать как движение в инерциальной системе, если к числу действующих на точку активных сил и реакций связей добавить переносную и кориолисову силы инерции.

Методы решения задач механики, которые до сих пор рассматривались, основываются на уравнениях, вытекающих или непосредственно из законов Ньютона, или же из общих теорем, являющихся следствием этих законов. Однако этот путь не является единственным. Оказывается, что уравнения движения или условия равновесия механической системы можно получить, положив в основу вместо законов Ньютона другие общие положения, называемые принципами механики. В ряде случаев применение этих принципов позволяет, как мы увидим, найти более эффективные методы решения соответствующих задач. В этой главе будет рассмотрен один из общих принципов механики, называемый принципом Даламбера.

Найдем сначала выражение принципа для одной материальной точки. Пусть на материальную точку с массой действует система активных сил, равнодействующую которых обозначим и реакция связи N (если точка является несвободной). Под действием всех этих сил точка будет двигаться по отношению к инерциальной системе отсчета с некоторым ускорением а.

Введем в рассмотрение величину

имеющую размерность силы. Векторную величину, равную по модулю произведению массы точки на ее ускорение и направленную противоположно этому ускорению, называют силой инерции точки.

Тогда оказывается, что движение точки обладает следующим свойством: если в любой момент времени к действующим на точку активным силам и реакции связи присоединить силу инерции, то полученная система сил будет уравновешенной, т. е.

Это положение выражает принцип Даламбера для материальной точки. Нетрудно убедиться, что оно эквивалентно второму закону Ньютона и наоборот. В самом деле, второй закон Ньютона для рассматриваемой точки дает Перенося здесь величину та в правую часть равенства и учитывая обозначение (84), придем к соотношению (85). Наоборот, перенося в уравнении (85) величину в другую часть равенства и учитывая обозначение (84), получим выражение второго закона Ньютона.

Рассмотрим теперь механическую систему, состоящую из материальных точек. Выделим какую-нибудь из точек системы с массой . Под действием приложенных к ней внешних и внутренних сил (в которые входят и активные силы, и реакции связей) точка будет двигаться по отношению к инерциальной системе отсчета с некоторым ускорением Введя для этой точки силу инерции получим согласно равенству (85), что

т. е. что образуют уравновешенную систему сил. Повторяя такие рассуждения для каждой из точек системы, придем к следующему результату, выражающему принцип Даламбера для системы: если в любой момент времени к каждой из точек системы кроме действующих на нее внешних и внутренних сил присоединить соответствующие силы инерции, то полученная система сил будет уравновешенной и к ней можно применять все уравнения статики.

Математически принцип Даламбера для системы выражается векторными равенствами вида (85), которые, очевидно, эквивалентны дифференциальным уравнениям движения системы (13), полученным в § 106. Следовательно, из принципа Даламбера, как и из уравнений (13), можно получить все общие теоремы динамики.

Значение принципа Даламбера состоит в том, что при непосредственном его применении к задачам динамики уравнения движения системы составляются в форме хорошо известных уравнений равновесия; это делает единообразным подход к решению задач и часто упрощает соответствующие расчеты. Кроме того, в соединении с принципом возможных перемещений, который будет рассмотрен в следующей главе, принцип Даламбера позволяет получить новый общий метод решения задач динамики (см. § 141).

Из статики известно, что геометрическая сумма сил, находящихся в равновесии, и сумма их моментов относительно любого центра О равны нулю, причем, как показано в § 120, это справедливо для сил, действующих не только на твердое тело но и на любую изменяемую механическую систему.

Тогда на основании принципа Даламбера должно быть:

Введем обозначения:

Величины представляют собою главный вектор и главный момент относительно центра О системы сил инерции. В результате, учитывая, что геометрическая сумма внутренних сил и сумма их моментов равны нулю, получим из равенств (86):

Применение уравнений (88), вытекающих из принципа Даламбера, упрощает процесс решения задач, так как эти уравнения не содержат внутренних сил. По существу уравнения (88) эквивалентны уравнениям, выражающим теоремы об изменении количества движения и главного момента количеств движения системы, и отличаются от них только по форме.

Уравнениями (88) особенно удобно пользоваться при изучении движения твердого тела или системы твердых тел. Для полного изучения движения любой изменяемой системы этих уравнений будет недостаточно, так же как недостаточно уравнений статики для изучения равновесия любой механической системы (см. § 120).

В проекциях на координатные оси равенства (88) дают уравнения, аналогичные соответствующим уравнениям статики (см. § 16, 30). Чтобы пользоваться этими уравнениями при решении задач, надо знать выражения главного вектора и главного момента сил инерций.

В заключение следует подчеркнуть, что при изучении движения по отношению к инерциальной системе отсчета, которое здесь и рассматривается, силы инерции вводятся только тогда, когда для решения задач применяется принцип Даламбера

Если рассматривать систему, которая состоит из нескольких материальных точек, выделяя одну определенную точку с известной массой, то под действием приложенных к ней внешних и внутренних сил она получает некоторое ускорение по отношению к инерциальной системе отсчета. Среди таких сил могут быть как активные силы, так и реакции связи.

Сила инерции точки - это векторная величина, которая равна по модулю произведению массы точки на ее ускорение. Данную величину иногда упоминают как даламберовскую силу инерции, она направлена противоположно ускорению. В этом случае обнаруживается следующее свойство движущейся точки: если в каждый момент времени прибавить силу инерции к фактически действующим на точку силам, то полученная система сил будет уравновешена. Так можно сформулировать принцип Даламбера для одной материальной точки. Данное утверждение полностью соответствует второму закону Ньютона.

Принципы Даламбера для системы

Если повторить все рассуждения для каждой точки в системе, они приводят к следующему выводу, который выражает принцип Даламбера, сформулированный для системы: если в любой момент времени приложить к каждой из точек в системе, помимо фактически действующих внешних и внутренних сил, то данная система будет находиться в равновесии, поэтому к ней можно применять все уравнения, которые используются в статике.

Если применять принцип Даламбера для решения задач динамики, то уравнения движения системы можно составить в форме известных нам уравнений равновесия. Данный принцип значительно упрощает расчеты и делает подход к решению задач единым.

Применение принципа Даламбера

Следует учитывать, что на движущуюся точку в механической системе действуют только внешние и внутренние силы, которые возникают как результат взаимодействия точек между собой, а также с телами, не входящими в данную систему. Точки движутся с определенными ускорениями под действием всех этих сил. Силы инерции не действуют на движущиеся точки, в противном случае они бы двигались без ускорения или были в покое.

Силы инерции вводятся лишь для того, чтобы составить уравнения динамики при помощи более простых и удобных методов статики. Учитывается также, что геометрическая сумма внутренних сил и сумма их моментов равна нулю. Использование уравнений, которые вытекают из принципа Даламбера, делает процесс решения задач проще, так как данные уравнения уже не содержат внутренних сил.

Просмотр: эта статья прочитана 44027 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Общие принципы динамики

Принцип Германа - Эйлера - Даламбера

Сила инерции

Принцип Даламбера (принцип кинетостатики) является одним из общих принципов механики, с помощью которого уравнениям динамики по форме придается вид уравнений статики. Принцип был предложен Германом в 1716 году, обобщен Эйлером в 1737 году.

Материальная точка М движется с ускорением под действием приложенных сил. Третий закон динамики отображает двусторонность механических процессов природы. При взаимодействии двух тел приложенные к каждому из них силы равны по модулю и направлены противоположно. Так как эти силы приложены к разным телам, они не уравновешиваются. Например, при взаимодействия некоторого тела А и точки М , которая имеет массу m , точка получает ускорение. Тело А действует на точку М с силой F=-ma . По закону действия и противодействия материальное точка М действует на тело А с силой Ф=-F=-ma , которая называется силой инерции.

Сила инерции или сила Даламбера - векторная величина, имеющая размерность силы, по модулю равна произведению массы точки на ее ускорение, и направлена противоположно этому ускорению.

Принцип Даламбера для материальной точки

Если в любой момент времени к фактически действующим на материальную точку силам добавить силу инерции, то полученная система сил будет уравновешенной.

Это означает, что для решения задачи динамики по принципу Германа - Эйлера - Даламбера следует, помимо приложенных к точке сил, условно приложить к этой точке силу инерции. приложение силы инерции к точке является условным приемом, сводящим задачу динамики лишь по форме решения к задаче статики.

Принцип Даламбера для системы материальных точек

Если в любой момент времени к каждой из точек системы, кроме фактически действующих на нее внешних и внутренних сил, приложить соответствующие силы инерции, то полученная система сил будет находиться в равновесии и для нее можно будет применить все уравнения статики.

Принцип Даламбера для несвободной механической системы

В любой момент времени для каждой точки несвободной механической системы, кроме фактически действующих на нее сил, добавить соответствующие силы инерции, то полученная система сил будет уравновешенной и для нее можно будет применить все уравнения статики.

То есть, в любой момент времени для каждой точки несвободной механической системы геометрическая сумма главных векторов заданных сил, реакций опор и сил инерции материальных точек системы равна нулю.

В любой момент времени для любой точки несвободной механической системы геометрическая сумма главных моментов заданных сил, реакций опор и сил инерции материальных точек системы относительно любого неподвижного центра равна нулю.

Обобщенная форма уравнений равновесия по принципу Даламбера

Приведение сил инерции точек твердого тела к простейшему виду.

Случаи приведения системы сил инерции твердого тела простейшему виду.

Поступательное движение

При поступательном движении силы инерции твердого тела приводятся до одной равнодействующей, проходящей через центр масс тела, и равной по модулю произведению массы тела на модуль ускорения его центра масс и направленной противоположно этому ускорению.

Вращения вокруг центра масс нет, поэтому момент силы инерции равен нулю.

Вращательное движение тела вокруг оси, проходящей через центр масс тела.

Если тело вращается вокруг неподвижной оси проходящей через центр масс тела, то силы инерции приводятся к одной паре сил, лежащей в плоскости перпендикулярной оси вращения.

Поскольку центр масс не движется главный вектор сил инерции равен нулю.

Плоскопаралельний движение

При плоском движении тела система сил инерции приводится к силе, приложенной в центре масс тела и паре сил. Направление момента силы инерции противоположен угловому ускорению тела.

Принцип возможных перемещений

Принцип возможных перемещений в общем виде определяет условия равновесия любой механической системы, то есть позволяет решать задачи статики, как задачи динамики.

Перемещение точек несвободной механической системы ограничено имеющимися связями. Положение точек системы определяется заданием независимых координат.

Независимые величины, заданием которых можно однозначно определяется положение всех точек механической системы, называются обобщенными координатами этой системы. Как правило, число обобщенных координат механической системы равно числу степеней свободы этой системы. Например, положение всех точек кривошипно-шатунного механизма определяется заданием угла поворота кривошипа.

Возможные или виртуальные перемещения

Возможные или виртуальные перемещения системы - это воображаемые бесконечно малые перемещения точек системы, допускаемые в данный момент наложенными на систему связями.

Криволинейные перемещения точек заменяют прямолинейными отрезками, отложенными по касательной к траекториям точек.

Число независимых между собой возможных перемещений системы называется числом степеней свободы этой системы.

Возможная или виртуальная работа

Возможная (или виртуальная) работа − это элементарная работа, которую действующая на материальную точку сила могла бы совершить на перемещении, совпадающем с возможным перемещением этой точки.

Принцип возможных перемещений для механической системы

Для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма робот всех активных сил при любом возможном перемещении системы равнялась нулю.

Уравнение возможных работ − математическое выражение необходимого и достаточного условий равновесия любой механической системы.

Общее уравнение динамики

Общее уравнение динамики (принцип Даламбера - Лагранжа)

Принцип возможных перемещений, дающий общий метод решения задач статики, можно применить и к решению задач динамики. На основании принципа Германа—Эйлера—Даламбера для несвободной механической системы в любой момент времени геометрическая сумма равнодействующей задаваемых сил, равнодействующей реакций связей и силы инерции для каждой точки Mn механической системы равна нулю.

Если система получает возможное перемещение, при котором каждая точка имеет возможное перемещение, то сумма работ этих сил на перемещении должна быть равна нулю.

Общее уравнение динамики для системы с идеальными связями

Положим, что все связи в рассматриваемой механической системе двусторонние и идеальные (силы трения, если они имеются, отнесены к числу задаваемых сил). Тогда сумма работ реакций связей на возможных перемещениях системы равна нулю.

При движении механической системы с идеальными связями в любой данный момент времени сумма элементарных робот всех активных (заданных) сил и всех сил инерции на любом возможном перемещении системы равняется нулю.

Общие уравнения динамики позволяют составить дифференциальные уравнения движения любой механической системы. Если механическая система состоит из отдельных твердых тел, то силы инерции точек каждого тела можно привести к силе, приложенной в некоторой точке тела, и паре сил. Сила равна главному вектору сил инерции точек этого тела, а момент пары равен главному моменту этих сил относительно центра приведения. Чтобы воспользоваться принципом возможных перемещений, к каждому телу прикладывают действующие на него задаваемые силы, а также условно прикладывают силу и пару, составленные силами инерции точек тела. Затем системе сообщают возможное перемещение и для всей совокупности задаваемых сил и приведенных сил инерции составляют общее уравнение динамики

Формат: pdf

Размер: 600КВ

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!