Системы органов в организме. Уровни организации

Уровни организации живых систем представляют собой некую упорядоченность, иерархическую систему, которая является одним из основных свойств живого, см. табл. 2.

Таблица 2

Каждая живая система состоит из единиц подчиненных ей уровней организации и является единицей, входящей в состав живой системы, которой она подчинена. Например, организм состоит из клеток, являющихся живыми системами, и входит в состав недоорганизменных биосистем (популяций, биоценозов).

Существование жизни на всех уровнях подготавливается и определяется структурой низшего уровня:

· характер клеточного уровня организации определяется молекулярным; · характер организменного – клеточным; · популяционно-видовой – организменным и т.д.

1. Молекулярный уровень. Молекулярный уровень несет отдельные, хотя и существенные признаки жизни. На этом уровне обнаруживается удивительное однообразие дискретных единиц. Основу всех животных, растений и вирусов составляют 20 аминокислот и 4 одинаковых оснований, входящих в состав молекул нуклеиновых кислот. У всех организмов биологическая энергия запасается в виде богатой энергией аденозинтрифосфорной кислоты (АТФ). Наследственная информация у всех заложена в молекулах дизоксирибонуклеиновой кислоты (ДНК), способной к саморепродукции. Реализация наследственной информации осуществляется при участии молекул рибонуклеиновой кислоты (РНК).

2. Клеточный уровень. Клетка является основной самостоятельно функционирующей элементарной биологической единицей, характерной для всех живых организмов. У всех организмов только на клеточном уровне возможны биосинтез и реализация наследственной информации. Клеточный уровень у одноклеточных организмов совпадает с организменным. В истории жизни на нашей планете был такой период (первая половина протерозойской эры ~ 2000 млн. лет назад), когда все организмы находились на этом уровне организации. Из таких организмов состояли все виды, биоценозы и биосфера в целом.

3. Тканевый уровень. Совокупность клеток с одинаковым типом организации составляет ткань. Тканевый уровень возник вместе с появлением многоклеточных животных и растений, имеющих различающиеся между собой ткани. Большое сходство между всеми организмами сохраняется на тканевом уровне.

4. Органный уровень. Совместно функционирующие клетки, относящиеся к разным тканям, составляют органы. (Всего лишь шесть основных тканей входят в состав органов всех животных и шесть основных тканей образуют органы у растений).

5. Организменный уровень. На организменном уровне обнаруживается чрезвычайно большое многообразие форм. Разнообразие организмов, относящихся к разным видам, а также в пределах одного вида, объясняется не разнообразием дискретных единиц низшего порядка (клеток, тканей, органов), а усложнением их комбинаций, обеспечивающих качественные особенности организмов. В настоящее время на Земле обитает более миллиона видов животных и около полумиллиона видов растений. Каждый вид состоит из отдельных индивидуумов (организмы, особи), имеющих свои отличительные черты.

6. Популяционно-видовой уровень. Совокупность организмов одного вида, населяющих определенную территорию, составляет популяцию. Популяция – это недоорганизменная живая система, которая является элементарной единицей эволюционного процесса; в ней начинаются процессы видообразования. Популяция входит в состав биоценозов.

7. Биоценотический уровень. Биогеоценозы – исторически сложившиеся устойчивые сообщества популяций различных видов, связанных между собой и окружающей средой обменом веществ, энергии и информации. Они являются элементарными системами, в которых осуществляется вещественно-энергетический круговорот, обусловленный жизнедеятельностью организмов.

8. Биосферный уровень. Совокупность биогеоценозов составляют: биосферу и обуславливают все процессы, протекающие в ней.

Таким образом, мы видим, что вопрос о структурных уровнях в биологии имеет некоторые особенности по сравнению с его рассмотрением в физике. Эта особенность состоит в том, что изучение каждого уровня организации в биологии ставит своей главной целью объяснение феномена жизни. Действительно, если в физике деление на структурные уровни материи в достаточной степени условно (критериями здесь являются масса и размеры), то уровни материи в биологии отличаются не столько размерами или уровнями сложности, но главным образом, закономерностями функционирования.

Действительно, если, например, исследователь изучил физико-химические свойства биологического объекта и его структуру, но не установил его биологического назначения в целостной системе, это будет означать, что изучен ещё один определенный объект, но не уровень живой материи.

Ещё одна особенность структуризации живой материи состоит в иерархической [ 2] соподчиненности уровней. Это означает, что низшие уровни как единое целое входят в высшие. Эта концепция структуризации получила название «многоуровневой иерархической матрешки».

Важно отметить, также, что число выделяемых в биологии уровней зависит от глубины профессионального изучения мира живого.

К началу документа

Контрольные вопросы

1. Дайте определение биологии. Что является предметом изучения биологии? 2. Назовите основные методы биологии. 3. Перечислите основные классификации биологических наук. 4. Дайте характеристику традиционной (натуралистской) биологии. 5. В чем заключаются особенности физико-химической биологии?

6. Что изучает молекулярная биология? 7. Перечислите основные экспериментальные методы физико-химической биологии. 8. Что изучает эволюционная биология? 9. Что такое теоретическая биология? Перечислите основные предпосылки (теоретические положения) ее создания. 10. Что такое биологическая система?

11. Назовите три основных системных свойства живого. 12. Перечислите основные качества живых систем. 13. В чем заключается открытость живых систем? 14. Поясните утверждение: «Живые системы являются самоуправляющимися и самоорганизующимися». 15. В чем заключается раздражимость живых систем?

16. «Единственный способ дать определение живому - …»(продолжите). 17. В чем заключается особенность структурных уровней в биологии по сравнению со структуризацией материи в физике? 18. В чем заключается концепция многоуровневой иерархической «матрешки»? 19. Перечислите структурные уровни организации живого. 20. Что такое популяция? 21. Что такое биогеоценоз? Экологическая система?

Литература

1. Тулинов В.Д., Недельский Н.Ф., Олейников Б.И. Концепции современного естествознания, М.: МУПК, 1995. 2. Кузнецов В.И., Идлис Г.М., Гутина В.Н. Естествознание М.: Агар, 1995. 3. Грядовой Д.И. Концепции современного естествознания, М.: Учпедиз, 1995. 4. Дягилев Ф.М. Концепции современного естествознания, М.: ИМПЭ, 1998. 5. Яблоков А.В., Юсуфов А.Г. Эволюционное учение. – М.: Высшая школа, 1998.

[ 1] Хиральность – зеркальная асимметрия молекул. Молекулы, из которых образовано живое вещество, могут быть только одной ориентации – «левой» или «правой». Например, молекула ДНК имеет вид спирали, и эта спираль всегда правая.

[ 2] Иерархия – расположение частей или элементов целого в порядке от высшего к низшему

К началу документа

Права на распространение и использование курса принадлежат Уфимскому Государственному Авиационному Техническому Университету

Для каждого организма характерна определенная организация его структур. Выделяют шесть уровней организации человеческого организма: 1) молекулярный; 2) клеточный; 3) тканевой; 4) органный; 5) системный; 6) организменный.

Молекулярный уровень организации. Любая живая система, как бы сложно она ни была организована, проявляется на уровне функционирования биологических макромолекул (биополимеров): нуклеиновых кислот, белков, жиров (липидов), полисахаридов, витаминов, ферментов и других органических веществ. Молекулы белка, в свою очередь, расщепляются в организме на молекулы мономеры - аминокислоты, жиры - на молекулы глицерина и жирных кислот, углеводы - на молекулы глюкозы и т.д. С молекулярного уровня начинаются важнейшие процессы жизнедеятельности организма. Петленко В.П. Валеология человека: Здоровье - любовь - красота. В 2-х книгах, 5 томах. 2-е изд. СПб., 1998.

Клеточный уровень организации. Клетка - элементарная структурная, функциональная и генетическая единица многоклеточного организма. В теле человека насчитывают приблизительно 1014 клеток. Клетки сложного организма специализированы.

Каждая клетка имеет клеточную мембрану, цитоплазму и ядро. Мембрана ограничивает внутреннюю среду клетки, защищает ее от повреждений, регулирует обмен веществ между клеткой и средой, обеспечивает взаимосвязь с другими клетками. Цитоплазма - внутренняя полужидкая среда клетки, в которой находятся органоиды клетки, в том числе и ядро, которое выполняет функции хранения и передачи наследственной информации, регуляции синтеза белка; деление ядра лежит в основе размножения клеток.

Тканевой уровень организации. Ткани - это группы клеток и межклеточного вещества, объединенные общим строением, функцией и происхождением. Различают четыре основные группы тканей: эпителиальная, соединительная, мышечная и нервная.

Эпителиальная (пограничная) ткань находится на поверхностях, граничащих с внешней средой, и выстилает изнутри стенки полых органов, кровеносных сосудов, входит в состав желез организма. Эпителий обладает высокой способностью к восстановлению (регенерации), служит материалом для волос, ногтей, эмали зубов.

Соединительные ткани (ткани внутренней среды) выполняют питательную, транспортную и защитную (кровь, лимфа), а также опорную (сухожилия, хрящи, костная ткань) функции. Разновидностью соединительной ткани является жировая.

Мышечная ткань делится на три вида:

Поперечнополосатую (скелетные мышцы, мышцы языка, глотки, гортани);

Гладкую (образует стенки внутренних органов);

Сердечную (как и скелетная она имеет поперечнополосатое строение, но подобно гладкой мускулатуре сокращается непроизвольно).

Нервная ткань, состоящая из нервных клеток (нейронов), участвует в проведении нервного импульса от различных органов и тканей в центральную нервную систему и обратно. Байер К., Шейнберг Л. Здоровый образ жизни. М., 1997.

Органный уровень организации. Различные ткани, соединяясь между собой, образуют органы: сердце, почки, легкие, головной мозг, спинной мозг, мышца, мочевой пузырь, матка, грудная железа, желудок, глаз, ухо и т.д. Орган занимает постоянное положение, имеет определенное строение, форму и функции. Органы, сходные по своему строению, функции и развитию, объединяются в системы органов.

Системный уровень организации. Совокупность органов, участвующих в выполнении какого-либо сложного акта деятельности, образующих анатомические и функциональные объединения - системы органов. Различают девять основных систем организма.

1. Система органов движения или опорно-двигательный аппарат объединяет все кости (скелет), их соединения (суставы, связки) и скелетные мышцы. Благодаря этой системе организм передвигается во внешней среде; кости скелета защищают внутренние органы от механических повреждений (череп - защищает мозг, грудная клетка - сердце и легкие). Брехман И.И. Валеология - наука о здоровье. М., 1990.

2. Пищеварительная система объединяет органы, выполняющие функции приема пищи, ее механической и химической переработки, всасывания питательных веществ в кровь и лимфу и выведения не переваренных частей пищи. Пищеварительная система состоит из ротовой полости, глотки, пищевода, желудка, тонкого и толстого кишечника. К пищеварительной системе относятся слюнные железы, печень и поджелудочная железа.

3. Дыхательная система осуществляет потребление организмом кислорода и выделение углекислого газа, т.е. функцию газообмена между организмом и внешней средой. К системе органов дыхания относятся носовая полость, гортань, трахея, бронхи и легкие.

4. Мочевыделительная система выполняет функцию выделения из организма конечных продуктов обмена и функцию поддержания постоянства внутренней среды организма (гомеостаза), в частности водно-солевого баланса. К мочевыделительной системе относятся почки, мочевой пузырь, мочеточники и мочеиспускательный канал.

5. Половая система объединяет органы размножения и выполняет функцию продления рода человеческого. Различают мужскую и женскую половые системы, которые включают наружные и внутренние половые органы (гонады).

К мужским половым органам относятся наружные (половой член, мошонка) и внутренние (яички с придатками, семявыносящие и семявыбрасывающие протоки, семенные пузырьки, предстательная и куперовы железы). Яички - парные мужские половые железы, вырабатывающие мужские половые клетки (сперматозоиды) и выделяющие в кровь мужские половые гормоны - андрогены. Процесс роста и развития мужских половых клеток называется сперматогенезом.

К женским половым органам относятся наружные (большие и малые половые губы, клитор) и внутренние (яичники, маточные трубы, матка, влагалище). Матка полый мышечный орган, предназначенный для вынашивания плода. Ее внутренний слой (эндометрий) выстлан слизистым эпителием, который обновляется в каждом менструальном цикле. Яичник - парная женская половая железа, в которой происходит развитие и созревание женских половых клеток (яйцеклеток), а также образование женских половых гормонов - эстрогенов и прогестерона. Процесс выхода созревшей яйцеклетки из яичника называется овуляцией. Делль Р.А., Афанасьева Р.Ф., Чубарова З.С. Гигиена одежды. М.,1991.

6. Эндокринная система состоит из желез внутренней секреции, к которым относятся гипофиз, эпифиз, вилочковая железа, щитовидная, поджелудочная, паращитовидная, половые железы, надпочечники. Они вырабатывают особые активные вещества (гормоны), которые непосредственно всасываются в кровь. Гормоны разносятся кровью по всему организму и оказывают регулирующее влияние на различные функции, прежде всего на обмен веществ, активность генов, процессы онтогенетического развития, дифференцировку тканей, формирование пола, размножение, тонус коры головного мозга и т.д..

7. Сердечнососудистая система (ССС) обеспечивает непрерывное движение крови в организме (кровообращение), благодаря чему осуществляются транспортные функции крови: доставка тканям кислорода, питательных веществ и гормонов и удаление из тканей веществ, образующихся в результате процессов обмена. ССС включает сердце, кровеносные (артерии, вены и капилляры) и лимфатические сосуды. ССС играет важную роль в интеграции организма в единое целое. Через кровь и лимфу осуществляется связь между органами.

8. Система органов чувств объединяет органы зрения, слуха, обоняния, вкуса и осязания. Они воспринимают информацию внешней среды, играют важную роль в обмене информацией между организмом и средой.

9. Нервная система играет ведущую роль в объединении организма в единое целое, регулирует деятельность всех внутренних органов и систем органов. Она осуществляет связь организма с окружающей внешней средой на основе условных и безусловных рефлексов, обеспечивая приспособление к изменяющимся условиям жизни, а также осуществляет психическую деятельность человека, возникающую на основе физиологических процессов ощущения, восприятия и мышления. Кавриго Н.М. Валеология: системный подход. Ижевск, 1998.

Нервная система включает головной и спинной мозг, отходящие от них нервы и все их разветвления. Головной и спинной мозг образуют центральную нервную систему (ЦНС). Высшим отделом ЦНС является кора головного мозга. Все нервы, отходящие от головного и спинного мозга, составляют периферическую нервную систему. Деятельность спинного мозга и периферической нервной системы регулируется вышележащими отделами ЦНС, т.е. головным мозгом.

Головной мозг расположен в черепе. В нем находятся нервные центры, обеспечивающие важнейшие функции организма и психическую деятельность человека. Масса головного мозга мужчин в среднем составляет 1400 г, а женщин - 1300 г. Эти различия отражают не умственную способность, а соотношение массы мозга к массе тела.

В головном мозгу различают большие полушария и ствол мозга. В стволе мозга находятся центры дыхания, сердечной деятельности, пищеварения, рвоты, координации движений и регуляции тонуса мышц, регуляции ощущений органами чувств и т.д. Это центры безусловных рефлексов - врожденных ответных реакций организма, обеспечивающих важные жизненные функции организма: дыхание, сердцебиение, пищеварение, терморегуляция, поддержание тонуса мышц.

Большие полушария (левое и правое) состоят из серого и белого вещества. Серое вещество, состоящее из тел нервных клеток, образует кору головного мозга толщиной около 3-4 мм. Белое вещество, образованное отростками нервных клеток, расположено под корой. Между правым и левым полушариями головного мозга существует межполушарная асимметрия. Это означает, что функции обоих полушарий не совсем одинаковы. Например, у правшей (люди, у которых главная действующая рука правая) центр речи находится в левом полушарии. Левое полушарие у правшей является главным нервным субстратом человеческого сознания и называется доминантным. Самойлов Н.Н., Стратиенко Е.Н. Особенности строения и функций мужских и женских половых органов. Брянск, 1998.

Лобные доли больших полушарий у человека - самые большие по площади участки коры (у животных они отсутствуют, кроме шимпанзе). Одна из функций лобной доли состоит в управлении врожденными поведенческими реакциями при помощи накопленного опыта. Для больных с пораженными лобными долями коры характерна импульсивность, несдержанность, раздражительность и другие проявления психической неустойчивости. Такие больные часто становятся грубыми, нетактичными, хотя интеллект у них сохраняется, они часто вступают в конфликт с другими людьми.

Кора головного мозга оказывает влияние на все функции организма и обеспечивает связь организма с внешней средой, обусловливая высшую нервную деятельность организма (психическую деятельность, мышление, память, речь и т.д.). В коре больших полушарий находятся центры условных рефлексов. Условные рефлексы - это приобретенные в процессе обучения знания, в течение жизни - навыки и умения. Если при повреждающих воздействиях погибают клетки коры головного мозга, то человек полностью или частично лишается знаний, умений и навыков, полученных им ранее. Такое воздействие возможно при клинической смерти, когда клетки коры головного мозга погибают от недостатка кислорода. Память имеет огромное значение в жизни человека. Можно лишь приблизительно оценить информационную емкость человеческого мозга. Общая информационная емкость головного мозга человека равна примерно 3х108 бит (бит - единица информации). Из всей информации, окружающей человека, в долговременную память поступает лишь 1%.

Уровень целостного организма. Организм человека функционирует как единое целое и представляет собой саморегулирующуюся систему. Взаимосвязанная, согласованная работа всех органов и физиологических систем обеспечивается гуморальной и нервной регуляцией. Семенов Э.А. Анатомия и физиология человека. М., 1997.

Нервная регуляция , координирующее влияние нервной системы (НС) на клетки, ткани и органы, приводящее их деятельность в соответствие с потребностями организма и изменениями окружающей среды; один из основных механизмов саморегуляции функций. Многоклеточный организм в своих жизненных проявлениях (рост, развитие, реакции на внешние воздействия и т.п.) выступает как единое целое. Эта целостность обеспечивается рядом регуляторных механизмов, среди которых ведущее значение у животных приобрела Н. р. Вследствие Н. р. деятельность клеток и органов может инициироваться, прекращаться, усиливаться, ослабляться; могут меняться функциональное и биохимическое состояние клеток и органов, особенности их строения. У многоклеточных, не имеющих НС (растения, зародыши животных, губки), упорядоченность функций обеспечивается межклеточными взаимодействиями - ионными, метаболическими и др

Гуморальная регуляция, координация физиологических и биохимических процессов, осуществляемая через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ (метаболиты, гормоны, гормоноиды ионы), выделяемых клетками, органами и тканями в процессе их жизнедеятельности. У высокоразвитых животных и человека Г. р. подчинена нервной регуляции и составляет совместно с ней единую систему нейрогуморальной регуляции. Продукты обмена веществ действуют не только непосредственно на эффекторные органы, но и на окончания чувствительных нервов (хеморецепторы) и нервные центры, вызывая гуморальным или рефлекторным путём те или иные реакции.

Гомеостаз, гомеостазис (от гомео... и греч. stásis - состояние, неподвижность), в физиологии, относительное динамическое постоянство состава и свойств внутренней среды и устойчивость основных физиологических функций организма человека, животных и растений

2..Онтогенез (от греч. ón, род. падеж óntos - сущее и...генез), индивидуальное развитие организма, совокупность последовательных морфологических, физиологических и биохимических преобразований, претерпеваемых организмом от момента его зарождения до конца жизни. О. включает рост, т. е. увеличение массы тела, его размеров, дифференцировку.

Возрастная периодизация - периодизация этапов в жизни человека и определения возрастных границ этих этапов, принятая в обществе система возрастной стратификации.

. Неравномерность и непрерывность роста и развития . Жизнь ребенка - это непрерывный процесс развития. Первые шаги и дальнейшее совершенствование двигательной функции, первые слова ребенка и развитие речевой функции, превращения ребенка в подростка в период полового созревания, развитие центральной нервной системы, осложнения рефлекторной деятельности - это примеры изменений в организме ребенка.

Характерной особенностью процесса роста детского организма является его неравномерность и волнообразность. Периоды усиленного роста меняются некоторым его замедлением. Наибольшей интенсивностью рост ребенка отмечается в первый год жизни и в период полового созревания. Первоначальный рост (рост при рождении) удваивается до 5 лет и утраивается до 15 лет. В младшем школьном возрасте длина тела увеличивается на 4-5см, а в период полового созревания на 6-8 см в год. От периода рождения и до достижения зрелого возраста длина тела увеличивается в 3,5 раза, длина туловища - в 3 раза, длина руки -в 4 раза, длина ноги - в 5 раз.

3.Возраст - продолжительность периода от момента рождения живого организма до настоящего или любого другого определённого момента времени.

Обычно под словом «возраст» понимается календарный возраст (паспортный возраст, хронологический возраст), при котором не учитываются факторы развития организма.

Биологический возраст, или Возраст развития - понятие, отражающее степень морфологического и физиологического развития организма. Введение понятия «биологический возраст» объясняется тем, что календарный (паспортный, хронологический) возраст не является достаточным критерием состояния здоровья и трудоспособности стареющего человека.

Среди сверстников по хронологическому возрасту обычно существуют значительные различия по темпам возрастных изменений. Расхождения между хронологическим и биологическим возрастом, позволяющие оценить интенсивность старения и функциональные возможности индивида, неоднозначны в разные фазы процесса старения. Самые высокие скорости возрастных сдвигов отмечаются у долгожителей, в более молодых группах они незначительны.

Биологический возраст определяется совокупностью обменных, структурных, функциональных, регуляторных особенностей и приспособительных возможностей организма. Оценка состояния здоровья методом определения биологического возраста отражает влияние на организм внешних условий и наличие (отсутствие) патологических изменений.

Биологический возраст, помимо наследственности, в большой степени зависит от условий среды и образа жизни. Поэтому во второй половине жизни люди одного хронологического возраста могут особенно сильно различаться по морфо-функциональному статусу, то есть биологическому возрасту. Моложе своего возраста обычно оказываются те из них, у которых благоприятный повседневный образ жизни сочетается с положительной наследственностью.

Основные проявления биологического возраста при старении – нарушения важнейших жизненных функций и сужение диапазона адаптации, возникновение болезней и увеличение вероятности смерти или снижение продолжительности предстоящей жизни. Каждое из них отражает течение биологического времени и связанное с ним увеличение биологического возраста.

Основными критериями биологического возраста считаются:

1) зрелость, оцениваемая по степени развития вторичных половых признаков;

2) скелетная зрелость (порядок и сроки окостенения скелета);

3) зубная зрелость (сроки прорезывания молочных и постоянных зубов, стертость зубов);

4) показатели зрелости отдельных физиологических систем организма на основании возрастных изменений микроструктур различных органов;

5) морфологическая и психологическая зрелость.

Морфологическая зрелость оценивается на основании развития опорно-двигательного аппарата - мышечной силы, статической выносливости, частоты и координации движений.

С морфологической и физиологической зрелостью тесно связана школьная зрелость, под которой подразумевают степень психофизиологической и морфологической зрелости, достаточную для начала школьного обучения.

Оценка морфологической зрелости основана на изменении пропорций тела, происходящем от того, что замедляется рост головы и шеи, но ускоряется рост конечностей

Акселера́ция или акцелерация (от лат. acceleratio - ускорение) - ускоренное развитие живого организма. Обычно используется для описания ускоренного физиологического развития человека, наблюдаемого в последние 150 лет, но в принципе термин применим и к другим живым организмам.

Ретардация (медицина ) - более поздняя закладка органа и замедленное его развитие у потомков по сравнению с предками. Зависит от начала функционирования органа и, следовательно, от условий среды, в которых проходит индивидуальное развитие организма - его онтогенез.

Причины акселерации. До настоящего времени не сформировано единой общепринятой точки зрения на происхождение процесса акселерации, хотя выдвинуто немало гипотез и предположений.

Так, большинство ученых считают определяющим фактором во всех сдвигах развития изменения в питании. Они связывают акселерацию с увеличением содержания в пище полноценных белков и натуральных жиров, а также с более регулярным потреблением овощей и фруктов в течение года, усиленной витаминизацией организма матери и ребенка.

Существует гелиогенная теория акселерации. В ней немаловажная роль отводится воздействию на ребенка солнечных лучей: считается, что дети в настоящее время больше подвергаются воздействию солнечной радиации. Однако этот довод кажется недостаточно убедительным, так как процесс акселерации в северных странах идет не меньшими темпами, чем в южных.

Имеется точка зрения о связи акселерации с изменением климата: считается, что влажный и теплый воздух замедляет процесс роста и развития, а прохладный сухой климат способствует потере тепла организмом, что якобы и стимулирует рост. Кроме того, есть данные и о стимулирующем воздействии на организм малых доз ионизирующих излучений.

Некоторые ученые в числе важных причин акселерации называют обусловленное достижениями медицины общее снижение заболеваемости в младенчестве и детстве вкупе с улучшением питания. Очевидно также, что появлению многих новых факторов воздействия на человека способствуют развитие науки и технический прогресс, причем свойства этих факторов и особенности их воздействия на организм еще мало изучены (речь идет о химических веществах, используемых в промышленности, сельском хозяйстве, быту, новых лекарственных средствах и др.). Некоторые исследователи значительную роль в акселерации отводят новым формам и методам воспитания и образования, спорту, физкультуре.

Связывают акселерацию и с негативным воздействием темпов современной городской жизни. Это и обильное искусственное освещение (включая рекламу); стимулирующее воздействие электромагнитных колебаний, возникающих при работе теле– и радиостанций; городской шум, движение транспорта; влияние радио, кино и телевидения на раннее интеллектуальное, особенно сексуальное, развитие.

Технический прогресс в экономически развитых странах привел к концентрации населения в больших городах. Развитие транспорта и связи сократило расстояния, ранее казавшиеся очень значительными. Усилилась миграция населения. Расширилась география брака, рушится генетическая изоляция. Это создает благоприятную почву для изменения наследственности. Молодое поколение становится выше ростом и созревает раньше своих родителей.

Акселерация является предметом изучения не только биологии и медицины, но и педагогики, психологии и социологии. Так, специалисты отмечают некоторый разрыв между биологической и социальной зрелостью молодых людей, при этом первая наступает раньше. В связи с этим встает ряд вопросов перед медицинской теорией и практикой. Например, появилась необходимость в определении новых норм трудовой и физической нагрузки, питания, нормативов детской одежды, обуви, мебели и др.

Одним из важных следствий акселерации становится то, что дети начинают раньше говорить, проявлять реакцию на звук, цвет, свет, держать головку, сидеть, стоять и ходить, чем их сверстники в недалеком прошлом. Акселерация не обошла стороной и вегетативную нервную систему - появляется потливость, тахикардия, бледнеет лицо и т.д.

Параллельно с этим происходит усиление деятельности половых желез

.Сенситивными периодами называют периоды особой восприимчивости детей к тем или иным способам и видам деятельности; к способам эмоционального реагирования, поведения вообще –вплоть до того, что каждая черта характера наиболее интенсивно развивается на основе внутреннего импульса в течении некоторого узкого промежутка времени. В соответствии с космическим планом развития сенситивные периоды служат тому, чтобы ребенок имел принципиальную возможность приобрести внутренне необходимые ему знания, умения, способы поведения и т.д.

Человеку никогда более так легко не удается овладеть определенными знаниями, так радостно учиться, как в соответствующий сенситивный период.

Сенситивные периоды длятся определенное время и проходят безвозвратно – независимо от того, удалось ли ребенку полностью воспользоваться их условиями для развития каких-либо своих способностей.

Взрослый извне не может повлиять на время возникновения и длительность сенситивных периодов, но имеет, по крайней мере, следующие возможности:

Знать эти периоды, их особенности наблюдать проявления, характерные для наиболее интенсивных этапов протекания определенного сенситивного периода, что необходимо для точной оценки уровня развития ребенка в настоящий момент;

Предвидеть наступление следующего сенситивного периода и подготовить соответствующую окружающую среду, чтобы у ребенка было то, в чем он особенно нуждается в данный момент. В этом смысле среда Монтессори-школы является оптимальным решением проблемы, потому что в ней всегда есть все, что ему может понадобиться для реализации этих познавательных потребностей.

Эти периоды универсальны, то есть возникают в ходе развития всех детей.

Они индивидуальны по времени возникновения и длительности у конкретного ребенка. Поэтому выглядит, мягко говоря, странной идея фронтального подхода к обучению детей (особенно в возрасте до 6 лет): во-первых, биологический возраст 5 лет не означает, что ребенок психологически соответствует этому возрасту; во-вторых, среднестатистические сроки начала и динамика протекания какого-либо сенситивного периода совершенно не гарантируют, что каждый ребенок проходит его именно так.

Отсюда следует необходимость динамической диагностики развития детей, определения индивидуальных особенностей развития ребенка в определенный период времени.

Протекание каждого сенситивного периода характеризуется более или менее медленным началом, которое довольно трудно заметить, если не предполагать возможность его наступления и не работать с ребенком в «зоне его ближайшего развития»; затем наступает этап наибольшей интенсивности, который наблюдать довольно просто; и более или менее медленный спад интенсивности.

Некоторые сенситивные периоды протекают примерно в одно и тоже время у разных детей, но имеют наивысшую интенсивность в разные моменты.

«Критические периоды» - что это значит? Беременность - одна из форм сосуществования двух организмов, двух миров, сливающихся в единое целое: женщины и развивающегося в её утробе дитя.

Успешное течение беременности обеспечивается адаптацией мамы и будущего ребенка друг к другу. Всё дело в том, что процессы этой адаптации очень сложные и в определенные моменты функционируют чрезвычайно напряженно.

Критические периоды беременности, или критические периоды в развитии эмбриона и плода - это те периоды, когда чувствительность их повышается, а адаптационные возможности снижаются и зародыш становится особенно легко уязвимым.

Эти периоды характеризуются активными клеточными и тканевыми процессами и значительным повышением обмена веществ.

Действие неблагоприятных факторов окружающей среды:

А) недостаток кислорода (гипоксия),

Б) переохлаждение,

В) перегревание,

Г) врачебные препараты,

Д) токсины,

Е) продукты химического производства,

Ж) возбудители вирусных и бактериальных инфекций и т.д.,

в зависимости от стадии развития зародыша может оказаться крайне опасным и даже губительным для него.

асле́дственность - способность организмов передавать свои признаки и особенности развития потомству. Благодаря этой способности все живые существа (растения, грибы, или бактерии) сохраняют в своих потомках характерные черты вида. Такая преемственность наследственных свойств обеспечивается передачей их генетической информации. Носителями наследственной информации у организмов являются гены.

Наследственностью называется передача родительских признаков детям. Некоторые наследственные качества (форма носа, цвет волос, глаз, очертания лица, музыкальный слух, певческий голос и др.) не требуют для своей фиксации использования каких-либо приборов, другие, связанные с цитоплазмой и ядерной ДНК (обменом веществ, группой крови, полноценностью набора хромосом и др.), предполагают проведение достаточно сложных исследований.

Рост и развитие ребенка зависят от полученных наследственных задатков, однако велика роль и окружающей среды. Принято различать благоприятную и неблагоприятную (или отягощенную) наследственность. Задатки, обеспечивающие гармоничное развитие способностей и личности ребенка, относятся к благоприятной наследственности. Если для развития этих задатков не будут созданы соответствующие условия, то они угасают, не достигая уровня развития одаренности родителей. Например, не развивается певческий голос, музыкальный слух, способности к рисованию и т. д.

Отягощенная наследственность не всегда может обеспечить нормальное развитие ребенка даже в хорошей среде воспитания. Обычно она является причиной аномалий (отклонений от нормы) и даже уродств, а в ряде случаев и причиной длительной болезни и смерти. Помимо этого, причиной аномалий у детей может быть алкоголизм родителей и вредность их профессии (например, работа, связанная с радиоактивными веществами, ядохимикатами, вибрацией).

Однако наследственность, особенно неблагоприятную, не следует считать чем-то неизбежным. В некоторых случаях она поддается коррекции и управлению. Например, разработаны способы лечения гемофилии – введение специфического белка крови.

Рождения детей с неблагоприятной наследственностью можно избежать, проконсультировавшись у врачей-генетиков. В частности, такие консультации способствуют предупреждению близкородственных браков, являющихся причиной рождения аномальных детей.

Своевременное выявление у детей унаследованных признаков позволяет направить одних детей в спецшколы для одаренных, других – во вспомогательные школы. Дети с умственными и физическими аномалиями (умственно отсталые, глухие, слепые) во вспомогательных школах приобщаются к общественно полезному труду, овладевают грамотой и повышают свое интеллектуальное развитие. Огромная заслуга в исправлении неблагоприятной наследственности у детей принадлежит олигофрено-, сурдо– и тифлопедагогике.

Квалифицированные педагоги в спецшколах совершенствуют математические, музыкальные и другие задатки детей, что связано с огромным трудом по их развитию. Педагог должен знать, что родители часто видят у своего ребенка необыкновенные способности, хотя на самом деле он может иметь весьма скромные задатки. Поэтому очень важно вовремя подсказать родителям, как развивать в ребенке ту склонность, которая выявляется у него и которую он, может быть, унаследовал от дедов, а не от родителей. Такое проявление способностей связано с особенностью наследственности: ее длительной устойчивостью, когда признаки передаются на протяжении многих поколений и не всегда проявляются в первых поколениях (это так называемая рецессивная наследственность).

Взаимоотношения организма со средой. Основоположник русской физиологии И.М. Сеченов писал, что «организм без внешней среды, поддерживающей его существование, невозможен, поэтому в научное определение организма должна входить и среда, влияющая на него». Следовательно, вне природы и социальной среды, по сути дела, нет и человека.

И.П. Павлов, развивая это положение, пришел к выводу, что о человеке необходимо говорить как о целостном организме, который тесно взаимосвязан с внешней средой и существует только до тех пор, пока сохраняется уравновешенное состояние его и окружающей среды. В связи с этим все рефлексы рассматривались Павловым как реакции постоянного приспособления к внешнему миру (например, приспособление человека к разным климатическим условиям или разной среде обитания).

Таким образом, развитие человека нельзя адекватно оценить без учета той среды, в которой он живет, воспитывается, работает, без учета тех, с кем он общается, а функции его организма – без учета гигиенических требований, предъявляемых к рабочему месту, домашней обстановке, без учета взаимоотношений человека с растениями, животными и др.

В основе наследственности лежит способность всех живых о рганизмов накапливать, хранить и передавать потомству наследственную информацию. Эта одна из важнейших качественных особенностей живой материи связана с нуклеиновыми кислотами - дезоксирибонуклеино-вой (ДНК) и рибонуклеиновой (РНК). Ведущее значение принадлежит ДНК - самой длинной молекуле живых организмов, сосредоточенной в ядрах клеток и представляющей собой ее наследственный аппарат. Большая длина молекулы ДНК дает возможность «записать» на ней, как на телеграфной ленте, все основные свойства будущего организма и программу его развития. Такая «запись» осуществляется с помощью специального «нуклеинового языка», или «нуклеинового кода», сущностью которого является изменение порядка следования четырех химических соединений, входящих в состав ДНК Образно говоря, «нуклеиновый язык» состоит из четырех букв, из которых строятся отдельные слова и целые предложения «нуклеинового языка».

На такой нуклеиновой «ленте» можно выделить отдельные самостоятельные участки, включающие в себя описание программы развития одного признака. Их называют генами.

Каждая молекула ДНК включает в себя сотни генов и представляет собой программу развития многих признаков и свойств организма. Объединяясь с особыми белками и некоторыми другими веществами, молекулы ДНК образуют в ядре специальные образования - так называемые хромосомы.

Число хромосом и их форма строго постоянны для каждого вида растительных и животных организмов. У человека в ядрах его соматических клеток содержится 46 хромосом, а в ядрах половых клеток их число вдвое меньше - 23. Однако в процессе оплодотворения, когда происходит слияние женской половой клетки (яйцеклетка) с мужской (сперматозоид), хромосом вновь становится 46. Такой двойной набор хромосом называют диплоидным, а одинарный набор хромосом половых клеток - гаплоидным.

Все 46 хромосом можно разбить на 23 пары, из них 22 относительно близки по форме и генному составу. Эти хромосомы называют гомологичными (от греч. гомология - согласие). 23-я пара - половые хромосомы X и Y. Абсолютного сходства между гомологичными хромосомами нет. В каждой гомологичной хромосоме всегда содержится большое число генов, контролирующих развитие различных признаков. Например, в одной хромосоме может находиться ген, обеспечивающий карий цвет глаз, а в другой - голубой.

Эти маленькие отличия в генном составе гомологичных хромосом имеют большое значение и лежат в основе изменчивости организмов - свойства потомства отличаться рядом признаков от своих родителей. Действительно, в процессе образования половых клеток гомологичные хромосомы расходятся в разные клетки, а в результате оплодотворения они объединяются в новые пары. Но теперь одна гомологичная хромосома - отцовская, а другая- материнская.

Значительные изменения генного состава хромосом могут осуществляться и в результате прямого обмена между гомологичными хромосомами участками, содержащими десятки генов.

Наконец, наибольшее значение в изменчивости организмов имеют мутации - резкие изменения какого-либо признака, связанного с изменением хромосомного или генного состава организма.

Хромосомные и генные мутации у человека относительно хорошо изучены, так как они лежат в основе наследственных болезней. Принято различать хромосомные и генные болезни. Первые связаны с изменением хромосомного аппарата человека, вторые - генного. Так, одно из тяжелейших наследственных заболеваний - синдром Дауна, связан с нарушением нормального числа хромосом.

Примером генного заболевания может быть гемофилия, при которой нарушается свертывание крови. В результате небольшой порез пальца может привести к смерти, так как кровотечение почти невозможно остановить.

Мутации не всегда вызывают заболевания и даже, напротив, бывают полезны организму. Без этого было бы невозможно постоянное совершенствование живой природы в процессе эволюции и гармоничное взаимодействие организмов с внешней средой.

Возникновение мутаций связано с влиянием внешней среды и происходит наиболее часто при воздействии на организм сверхсильных факторов (различные виды радиации, химические вещества, болезни и др.). У человека возникновение мутаций обусловлено также его возрастом, полом, характером деятельности и т. д. Генетиками подсчитано, что даже в идеальных условиях у каждого человека в течение его жизни обязательно происходит мутация одного гена.

Механизм передачи наследственной информации в общем виде включает три основные стадии: 1) воспроизведение заключенной в ДНК генетической информации с помощью матричного механизма ее удвоения - репликация; 2) перенос этой информации в молекулу РНК - транскрипция; 3) синтез на основе этой информации белковых молекул, в том числе ферментов - трансляция.

Рассмотрим эти процессы более детально. Остановимся прежде всего на строении ДНК и РНК и их роли в передаче наследственной информации, которая демонстрируется наиболее наглядно на примере контроля ДНК-за синтезом в клетках белковых молекул.

Механизмы передачи генетической информации – репликация, транскрипция, трансляция (биосинтез белка)

Передача генетической информации осуществляется с помощью трех механизмов: репликации, транскрипции, трансляции.

Репликация (досл. «удвоение» ДНК) – это многоэтапный, упорядоченный процесс, идущий по матрице ДНК в направлении 5`à3`, в результате которого из каждой молекулы ДНК образуется 2 абсолютно идентичные, «дочерние» ДНК. С репликации ДНК начинается процесс деления клетки. Репликация ДНК начинается на многих участках (репликативных единицах) и идет одновременно по обеим цепям.

Репликация идет полуконсервативным путем: у каждой дочерней ДНК одна из цепей – исходная (материнская), а вторая вновь образованная (дочерняя) (опыты Мезельсона и Сталя). В процессе репликации участвует около 30 белков и ферментов, образующих репликативный комплекс: расплетающие ферменты (хеликаза и ДНК-топоизомеразы), ДНК-полимеразы, ДНК-лигазы, ДНК-зависимые РНК-полимеразы.

В геноме человека репликация происходит в течение 9 часов. Это необходимо для образования тетраплоидного генома из диплоидного в реплицирующейся клетке. Для репликации необходимо наличие множественных мест репликации (репликативных единиц – их около 100).

Изменчивостью назы вают свойство организмов приобретать новые признаки, отличающие их от других организмов того же вида.

Изменчивость затрагивает все свойства организмов: черты строения, окраску, физиологию, особенности поведения и пр. В потомстве одной пары животных или растений, выращенных из семян одного плода, невозможно найти двух полностью тождественных особей. Природа изменчивости различна. Дарвин различал две основные формы изменчивости - ненаследственную и наследственную.

Хромосо́мы (др.-греч. χρῶμα - цвет и σῶμα - тело) - нуклеопротеидные структуры в ядре эукариотической клетки (клетки, содержащей ядро), которые становятся легко заметными в определённых фазах клеточного цикла (во время митоза или мейоза). Хромосомы представляют собой высокую степень конденсации хроматина, постоянно присутствующего в клеточном ядре. Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия всё чаще говорят о бактериальных хромосомах. В хромосомах сосредоточена большая часть наследственной информации.

Феноти́п (от греческого слова phainotip - являю, обнаруживаю) - совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа, опосредованного рядом внешнесредовых факторов. У диплоидных организмов в фенотипе проявляются доминантные гены.

Фенотип - совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуального развития).

Несмотря на кажущееся строгое определение, концепция фенотипа имеет некоторые неопределенности. Во-первых, большинство молекул и структур кодируемых генетическим материалом, не заметны во внешнем виде организма, хотя являются частью фенотипа. Например, именно так обстоит дело с группами крови человека. Поэтому расширенное определение фенотипа должно включать характеристики, которые могут быть обнаружены техническими, медицинскими или диагностическими процедурами. Дальнейшее, более радикальное расширение может включать приобретенное поведение или даже влияние организма на окружающую среду и другие организмы. Например, согласно Ричарду Докинзу, плотину бобров также как и их резцы можно считать фенотипом генов бобра.

Фенотип можно определить как «вынос» генетической информации навстречу факторам среды. В первом приближении можно говорить о двух характеристиках фенотипа: а) число направлений выноса характеризует число факторов среды, к которым чувствителен фенотип, - мерность фенотипа; б) «дальность» выноса характеризует степень чувствительности фенотипа к данному фактору среды. В совокупности эти характеристики определяют богатство и развитость фенотипа. Чем многомернее фенотип и чем он чувствительнее, чем дальше фенотип от генотипа, тем он богаче. Если сравнить вирус, бактерию, аскариду, лягушку и человека, то богатство фенотипа в этом ряду растет.

Геноти́п - совокупность генов данного организма, которая, в отличие от понятий генома и генофонда, характеризует особь, а не вид (ещё отличием генотипа от генома является включение в понятие «геном» некодирующих последовательностей, не входящих в понятие «генотип»). Вместе с факторами внешней среды определяет фенотип организма.

Обычно о генотипе говорят в контексте определенного гена, у полиплоидных особей он обозначает комбинацию аллелей данного гена (см. гомозигота, гетерозигота). Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям:

1. По источнику информации (генотип определяется при изучении ДНК особи, фенотип регистрируется при наблюдении внешнего вида организма).

2. Генотип не всегда соответствует одному и тому же фенотипу. Некоторые гены проявляются в фенотипе только в определённых условиях. С другой стороны, некоторые фенотипы, например, окраска шерсти животных, являются результатом взаимодействия нескольких генов по типу комплементарности.

Онтогенез обусловлен влиянием наследственных факторов и определяется генетической программой, которая складывается в результате взаимодействия родительских генов. Генетическая программа индивидуального развития реализуется в определенных условиях окружающей среды. На различных этапах онтогенеза влияние генетической информации и окружающей среды неодинаково. Так, в первые годы жизни влияние среды оказывается неизмеримо сильнее, чем в более поздние годы.

Основные закономерности наследования признаков. Наследственность человека изучена в настоящее время в значительно меньшей степени, чем механизмы наследования признаков у растительных и животных организмов. Тем не менее уже сегодня получены интересные данные о наследственной обусловленности многих физических признаков человека. Современный уровень генетической науки позволяет также утверждать, что все основные закономерности наследования признаков и законы наследственности, выявленные в экспериментах с растениями и животными, являются справедливыми и для человека.

Например, если молодой человек, у которого в обеих гомологичных хромосомах содержатся гены, обеспечивающие карий цвет глаз (гомозиготный по карему цвету), женится на голубоглазой девушке, у которой в хромосомах также содержатся только гены, обеспечивающие голубой цвет глаз, то их потомство будет наследовать цвет глаз по законам, открытым основателем генетики Г. Менделем еще в 60-е годы прошлого столетия в его опытах с растительными гибридами гороха.

Наследование пола у человека и большинства животных также происходит по общим закономерностям и связано с распределением хромосом, имеющих Х- и К-образ-ную форму (половые хромосомы). В хромосомном наборе женского организма содержится две Х-хромосомы, а в мужском - одна хромосома X и одна У-хромосома (см. рис. 7).

Число подобных примеров может быть бесконечно большим, и нет сомнения, что «генный портрет» человека (генотип) определяет в значительной степени многие его внешние свойства (фенотип). Ниже перечислены некоторые наследственные признаки человека, определяемые доминантными и рецессивными генами (по К- Вилли, 1974). Проявление генного влияния может осуществляться на различных этапах онтогенеза, но большинство фенотипи-ческих признаков определяется еще до рождения. Наконец, и само проявление генов не бывает фатальным, а зависит от факторов внешней среды. Например, тяжелое наследственное заболевание фенилкетонурия не развивается, если ребенок, содержащий в генотипе гены, вызывающие это заболевание, сразу же после рождения начинает получать определенную диету.

Таким образом, генетика располагает убедительными фактами, доказывающими существование как строго обусловленных наследственностью^ признаков (например, уппы крови, гемофилия, цвет волос и глаз, черты лица и многие другие), так и признаков, определяемых в большой степени внешней средой (например, рост и масса человека, сила и ловкость его мышц, склонность к заболеваниям и др.).

Следует отметить, что между генами и признаками не существует прямой связи: развитие одного признака может зависеть от влияния множества генов, а один ген может оказывать влияние на развитие многих признаков. Эта картина еще более усложняется постоянной коррекцией со стороны внешней среды.

Следовательно, наел едет вен н ость _и с реaj^кaKjfcактотж^ развития всегда тесно взаимосвязаны. Нельзя представить себе развитие ребенка без корригирующих влияний среды, так же как оно невозможно без генетически предопределенной программы развития, представляющей синтез исторического опыта всех предшествующих поколений.

Рассмотрим роль наследственности и среды в развитии некоторых физических признаков человека в процессе его пренатального и постнатального развития.

Пренатальное развитие. Формирование органов и функциональных систем ребенка в процессе эмбриогенеза находится под контролем генотипа, но факторы внешней среды играют не последнюю роль. Для зародыша первичной средой является материнский организм. Здесь в специальном органе - матке - зародыш относительно хорошо защищен от многих вредных воздействий и получает через плаценту все необходимое ему для существования. Тем не менее, особенно на начальных этапах развития, многие факторы, влияющие на материнский организм, сказываются и на развитии зародыша (наиболее значительными являются: ионизирующее излучение, заболевания, перенесенные женщиной во время беременности, и многие химические вещества: алкоголь, никотин, антибиотики, гормональные препараты и др.).

Следует отметить, что в пренатальном периоде человека есть критические периоды, когда развивающийся организм особо чувствителен к действию внешних факторов. Выделяют два таких периода. Первый включает начало пренатального развития, его первые три недели. В это время происходит закладка всех важнейших органов, и неблагоприятные воздействия в этот период чаще приводят к гибели зародыша. В течение второго критического периода (с 4-й по 7-ю неделю) происходит дальнейшее развитие всех органов, и вредные внешние воздействия в этот период могут привести к рождению ребенка с различными физическими дефектами (рис. 9).

Важным является тот факт, что одинаковые физические врожденные дефекты могут быть связаны и с повреждением генетических структур, и с действием неблагоприятных внешних факторов в процессе эмбриогенеза. Это хорошее свидетельство того, что среда и наследственность в равной степени ответственны за нормальное развитие ребенка.

Итак, к моменту рождения все органы человека и его физиологические системы, в том числе и нервная система, оказываются в общих чертах сформированными. Естественно, возникает вопрос: являются ли наследственно предопределенными те свойства нервной системы, которые лежат в основе психической деятельности человека, в основе его разума? Существуют ли готовые морфологические «заготовки сознания» так же, как они существуют для низшей нервной деятельности, связанной с регуляцией жизненных процессов нашего тела. Чтобы ответить на эти вопросы, остановимся на следующем, постнатальном этапе развития человека.

Постнатальное развитие ребенка. Прежде всего рассмотрим основные методы, позволяющие изучать удельное значение среды и наследственности в постнатальном развитии детей и подростков.

Проведение подобных экспериментов на растениях является простым и состоит в выделении двух групп организмов, идентичных по генотипу, и помещении этих групп в различные условия существования. Например, одну группу растений (контрольную) выращивают в обычных условиях, другую (экспериментальную) - в затемненном помещении. В результате подобных опытов можно сделать вывод, что образование зеленого хлорофилла растений зависит не только от наследственности, но и от факторов внешней среды (света), так как растения, выросшие в темноте, не будут содержать этот пигмент.

Проведение аналогичных опытов на людях невозможно как с морально-этической стороны, так и с биологической. В мире нет двух людей с одинаковыми генотипами. Но... есть и исключения из правила. Это идентичные, или гомозиготные, близнецы (ИБ), имеющие не только поразительное внешнее сходство, но и почти одинаковые генные «портреты». Рождение идентичных и неидентичных близнецов (НБ) явление нередкое, в среднем из 100 беременностей одна завершается рождением более чем одного ребенка. Близнецы - превосходнейший «материал», подаренный ученым самой природой, поэтому и сам метод называют близнецовым. В чем его сущность?

Допустим, нужно установить, какой фактор несет большую ответственность за физическое развитие и рост ребенка: наследственность или среда? Для этого выделяют близнецовые пары, проводят их морфологическое обследование и изучают образ жизни (обычно близнецы, особенно идентичные, имеют сходные интересы и близкие условия воспитания). На основании проведенных исследований устанавливают коэффициент сходства (конкордантность) между близнецами и делают заключение о роли наследственности или среды в развитии тех или иных качеств. Результаты подобных исследований идентичных и неидентичных близнецов по частоте встречаемости среди них некоторых заболеваний представлены в табл. К сожалению, педагоги проводят пока слабую работу по выявлению одаренных детей, что часто связано с недооценкой детской физиологической и психической индивидуальности, с незнанием элементарной биологии ребенка. Слабую работу по выявлению детской одаренности можно также объяснить еще низким уровнем исследований в этой области и отсутствием точных научных критериев, по которым педагогу нетрудно было бы обнаружить наследственные наклонности ребенка. Существует лишь тесная связь между одаренностью и высоким уровнем возбудимости нервной системы, признаком чего часто является резкая неуравновешенность (психопатичность) ребенка. К таким детям педагог должен относиться особо внимательно. Это необходимо прежде всего с гигиенической стороны, так как неверные действия педагога могут привести к развитию крайних черт характера в патологические. Необходимо это также и для своевременного выявления наследственных задатков и их оптимального развития. Важно помнить, что видимое отсутствие склонностей к учению, внешняя лен-ность и недисциплинированность еще не являются достаточными доказательствами отсутствия способностей. Из истории известно немало доказательств справедливости этого заключения. Создатель теории относительности А. Эйнштейн в детстве не проявлял открытых способностей и только в 9 лет смог пойти в подготовительную школу. Плохо учились в школе А. Гумбольдт (1769-1859) и Л. Пастер (1822-1895), выдающийся английский физик И. Ньютон слыл в школе лентяем и неспособным учеником. Можно полагать, что умелое обращение с ними родителей и педагогов создало в конце концов все необходимые условия для развития талантов. Тем более что важнейшим качеством гениальности является трудолюбие. Великий американский изобретатель Т. Эдисон писал: «Гений-это один процент вдохновения, а на девяносто девять процентов потение». Тот, кто не научится «потеть», никогда не сможет достичь больших успехов в любом виде человеческой деятельности, несмотря на самые выдающиеся наследственные задатки. Кто, как не педагог, должен в первую очередь воспитывать у ребенка трудолюбие - этот важнейший фактор прогрессивного развития личности, главнейшее условие формирования любых способностей.

Таким образом, наследственность лишь дает «сырой материал», а среда осуществляет его основную «переработку». Человек, родившийся даже с самыми благоприятными задатками, но живущий в среде, препятствующей развитию его способностей, останется посредственностью, так что основная ответственность за развитие интеллектуальных возможностей ребенка ложится на воспитателей. Тем не менее роль среды не следует абсолютизировать, нельзя забывать, что «материал», поставляемый наследственностью, не всегда бывает качественным и даже самый талантливый скульптор не сможет из песка изваять скульптуру, точно так же, как глыба мрамора сама по себе не станет произведением искусства.

Почему человек всегда пытался узнать, как работают системы, управляющие его организмом? Видимо, потому, что понимание принципов функционирования и взаимодействия нервной и эндокринной систем - самых сложных из всех известных биологических объектов - представляет несомненный интерес. Кроме того, все психические явления выступают производными физических и химических процессов, происходящих в человеческом теле и прежде всего в нервной и эндокринной системах. Раскрыв их суть, можно более осознанно относиться к использованию ресурсов мозга, лечить болезни, корректировать психические функции и т.п..

Подавляющее большинство современных психологов (не говоря уже о биологах и медиках) исходят из того, что центральная нервная система (ЦНС) в той или иной степени является материальным субстратом психической деятельности. К сожалению, сегодня нейронауки еще далеки от видения полной картины не только принципов, но и частных проявлений работы ЦНС. Недаром один из величайших биологов XX столетия Нобелевский лауреат Ф. Крик пишет, что такие функции мозга человека, как восприятие, сознание, воображение, эмоции, «недоступны пониманию на современном уровне нащих знаний. Для того чтобы постичь эти высшие уровни нервной деятельности, очевидно, хорошо было бы как можно больше узнать о более низких уровнях, особенно доступных прямому эксперименту. Необходимо рассмотреть теории, которые касаются переработки информации в больших и сложных системах, будь то информация, поступающая от органов чувств, или инструкции, посылаемые мышцам и же-лезам, или же поток сигналов, заключающийся в обширной нервной и эндокринной активности между этими двумя крайними членами». Мы не ставим целью решение вопроса об отношении психического к физическому. Они лишь исходят из того очевидного факта, что современный психолог, особенно работающий в прикладных сферах, должен владеть базовыми знаниями в таких областях, как анатомия мозга, нейрофизиология, нейрохимия, физиология поведения, нейроэндокринология.

В настоящее время интерес к психологии как профессии чрезвычайно высок. Кроме различных форм подготовки специалистов-психологов, все более развивается система поствузовского обучения, позволяющая осваивать различные области психологии (например, психотерапию) теми, кто уже имеет высшее образование. Студентам читаются курсы анатомии и физиологии нервной системы, физиологии высшей нервной деятельности, физиологии сенсорных систем, иногда - общей биологии и др. Однако специализированных пособий, в которых учитывалась бы специфика преподавания перечисленных дисциплин будущим психологам, явно недостаточно.

В предлагаемом пособии авторы попытались изложить современные представления о принципах устройства и функционирования двух основных интегрирующих и регулирующих систем организма - нервной и эндокринной. Значительное внимание уделено как отдельным молекулярным регуляторам, так и деятельности клеток и клеточных структур, а также системному уровню, обеспечивающему регуляцию внутренних органов, обучение, изменение эмоционального состояния и т.д..

Задача авторов несколько осложнялась тем, что в учебных заведениях психологического профиля не преподают химию и физику. Поэтому сведения, относящиеся к этим разделам зна-ний, представлены в доступной форме и лишь тогда, когда они необходимы для понимания основ функционирования нервной и эндокринной систем. Химические формулы медиаторов, гормонов и т.п. будут понятны читателям, обладающим соответствующей подготовкой. Те же, для кого восприятие формул затруднительно, вполне могут овладеть материалом, пользуясь лишь текстом учебника. Авторы старались привести как можно больше примеров, позволяющих наглядно представить, в каких областях могут быть использованы специалистом-психологом излагаемые сведения.

Пособие может быть использовано при изучении курсов анатомии и физиологии нервной системы, физиологии ВНД, а также родственных учебных дисциплин (например, общей биологии, зоопсихологии, психофизиологии), которые читаются будущим психологам и студентам некоторых других специальностей (педагоги, биологи, медики и т. п.).

Нервно-гуморальная регуляция функций в организме Понятие координации. Деятельность всех органов и систем организма согласованна. На воздействия из внешней и внутренней среды организм реагирует как единое целое. Объединение деятельности различных систем организма в единое целое (интеграция) и согласование, взаимодействие, ведущее к приспособлению организма к различным условиям среды (координация), связаны с деятельностью центральной нервной системы.

Биологически активные вещества (БАВ) - группа химических соединений, которые оказывают выраженный физиологический эффект в минимальных количествах.

В пище находится большинство из них, например: алкалоиды, гормоны и гормоноподобые соединения, витамины, микроэлементы, биогенные амины, нейромедиаторы. Все они обладают фармакологической активностью, а многие служат ближайшими предшественниками сильнодействующих веществ, относящихся к фармакологии.

БАВ-микронутриенты применяются для лечебно-профилактических целей в составе биологически активных пищевых добавок.

Эндокринные железы (от эндо... и греч. kríno - отделяю, выделяю), железы внутренней секреции, железы животных и человека, не имеющие выводных протоков и выделяющие вырабатываемые ими вещества - гормоны - непосредственно в кровь или лимфу. К Э. ж. относятся щитовидная железа, околощитовидные железы, надпочечники, гипофиз. Половые железы (яичники и семенники), а также поджелудочная железа осуществляют наряду с внутренней и внешнюю секрецию. См. Внутренняя секреция, Железы, ср. Экзокринные железы.

Общие принципы структурно-функциональной организации эндокринных желез:

не имеют выводных протоков, так как выделяют гормоны в кровь;

имеют богатое кровоснабжение;

имеют капилляры фенестрированного или синусоидного типа;

являются органами паренхиматозного типа, в большинстве своем образованы эпителиальной тканью, формирующей тяжи и фолликулы;

в эндокринных органах преобладает паренхима, строма же развита слабее, то есть органы построены экономно;

вырабатывают гормоны - биологически активные вещества, оказывающие выраженные эффекты в малых количествах.

Классификация гормонов:

белки и полипептиды - гормоны гипофиза, гипотоламуса, поджелудочной железы и некоторых других желез;

производные аминокислот - гормоны щитовидной железы (тироксин и трийодтиронин), гормон мозгового вещества надпочечников адреналин, серотонин, вырабатываемый многими эндокринными железами и клетками и другие;

стероиды (производные холестерина) - половые гормоны, гормоны коры надпочечников, витамин D2 (кальцитриол).

Особенности действия гормонов:

дистантность - могут вырабатываться далеко от клеток-мишеней;

специфичность;

избирательность;

высокая активность в малых дозах.

Механизм действия гормонов

Попадя в кровь, гормоны с ее током достигают регулируемых клеток, тканей, органов, которые называются мишенями. Можно выделить два основных механизма действия гормонов:

Первый механизм - гормон связывается на поверхности клеток с комплементарными ему рецепторами и изменяет пространственную ориентацию рецептора. Последние являются трансмембранными белками и состоят из рецепторной и каталитической части. При связывании с гормоном активируется каталитическая субъединица, которая начинает синтез вторичного посредника (мессенджера). Мессенджер активирует целый каскад ферментов, что ведет к изменению внутриклеточных процессов. Например, аденилатциклаза вырабатывает циклический аденозинмонофосфат, регулирующий ряд процессов в клетке. По данному механизму функционируют гормоны белковой природы, молекулы которых гидрофильны и не могут проникать через клеточные мембраны.

Второй механизм - гормон проникает в клетку, связывается с белком-рецептором и вместе с ним попадает в ядро, где изменяет активность соответствующих генов. Это ведет к изменению метаболизма клетки. Эти же гормоны могут действовать на отдельные органеллы, например, митохондрии. По этому механизму действуют жирорастворимые стероидные и тиреоидные гормоны, которые благодаря липотропным свойствам легко проникают внутрь клетки через ее оболочку.

Классификация эндокринных желез по иерархическому принципу:

центральные - гипоталамус, эпифиз и гипофиз. Они осуществляют контроль за деятельностью других (периферических) эндокринных желез;

периферические, которые осуществляют непосредственный контроль за важнейшими функциями организма.

В зависимости от того, находятся ли они под регулирующим действием гипофиза или нет, периферические эндокринные железы делятся на две группы:

1 группа - аденогипофизнезависимые кальцитониноциты щитовидной железы, паращитовидная железа, мозговое вещество надпочечников, островковый аппарат поджелудочной железы, тимус, эндокринные клетки диффузной эндокринной системы;

2 группа - аденогипофиззависимые щитовидная железа, кора надпочечников, гонады.

По уровню структурной организации:

эндокринные органы (щитовидная и паращитовидные железы, надпочечники, гипофиз, эпифиз);

эндокринные отделы или ткани в составе органов, сочетающих эндокринные и неэндокринные функции (гипоталамус, островки Лангерганса поджелудочной железы, ретикулоэпителий и тельца Гассаля в тимуса, клетки Сертоли извитых канальцев яичка и фолликулярный эпителий яичка);

клетки диффузной эндокринной системы.

Гормо́ны (греч. Ορμόνη) (греч. hormao - возбуждаю, побуждаю) - биологически активные сигнальные химические вещества, выделяемые эндокринными железами непосредственно в организме и оказывающие дистанционное сложное и многогранное воздействие на организм в целом либо на определённые органы и ткани-мишени. Гормоны служат гуморальными (переносимыми с кровью) регуляторами определённых процессов в различных органах и системах.

Существуют и другие определения, согласно которым трактовка понятия гормон более широка: «сигнальные химические вещества, вырабатываемые клетками тела и влияющие на клетки других частей тела». Это определение представляется предпочтительным, так как охватывает многие традиционно причисляемые к гормонам вещества: гормоны животных, которые лишены кровеносной системы (например, экдизоны круглых червей и др.), гормоны позвоночных, которые вырабатываются не в эндокринных железах (простагландины, эритропоэтин и др.), а также гормоны растений.

Когда гормон, находящийся в крови, достигает клетки-мишени, он вступает во взаимодействие со специфическими рецепторами; рецепторы «считывают послание» организма, и в клетке начинают происходить определенные перемены. Каждому конкретному гормону соответствуют исключительно «свои» рецепторы, находящиеся в конкретных органах и тканях - только при взаимодействии гормона с ними образуется гормон-рецепторный комплекс.

Механизмы действия гормонов могут быть разными. Одну из групп составляют гормоны, которые соединяются с рецепторами, находящимися внутри клеток - как правило, в цитоплазме. К ним относятся гормоны с липофильными свойствами - например, стероидные гормоны (половые, глюко- и минералокортикоиды), а также гормоны щитовидной железы. Будучи жирорастворимыми, эти гормоны легко проникают через клеточную мембрану и начинают взаимодействовать с рецепторами в цитоплазме или ядре. Они слабо растворимы в воде, при транспорте по крови связываются с белками-носителями.

Считается, что в этой группе гормонов гормон-рецепторный комплекс выполняет роль своеобразного внутриклеточного реле - образовавшись в клетке, он начинает взаимодействовать с хроматином, который находится в клеточных ядрах и состоит из ДНК и белка, и тем самым ускоряет или замедляет работу тех или иных генов. Избирательно влияя на конкретный ген, гормон изменяет концентрацию соответствующей РНК и белка, и вместе с тем корректирует процессы метаболизма.

Биологический результат действия каждого гормона весьма специфичен. Хотя в клетке-мишени гормоны изменяют обычно менее 1 % белков и РНК, этого оказывается вполне достаточно для получения соответствующего физиологического эффекта.

Большинство других гормонов характеризуются тремя особенностями:

они растворяются в воде;

не связываются с белками-носителями;

начинают гормональный процесс, как только соединяются с рецептором, который может находиться в ядре клетки, ее цитоплазме или располагаться на поверхности плазматической мембраны.

В механизме действия гормон-рецепторного комплекса таких гормонов обязательно участвуют посредники, которые индуцируют ответ клетки. Наиболее важные из таких посредников - цАМФ (циклический аденозинмонофосфат), инозитолтрифосфат, ионы кальция.

Так, в среде, лишенной ионов кальция, или в клетках с недостаточным их количеством действие многих гормонов ослабляется; при применении веществ, увеличивающих внутриклеточную концентрацию кальция, возникают эффекты, идентичные воздействию некоторых гормонов.

Участие ионов кальция как посредника обеспечивает воздействие на клетки таких гормонов, как вазопрессин и катехоламины.

Однако есть гормоны, у которых внутриклеточный посредник до сих пор не обнаружен. Из наиболее известных таких гормонов можно назвать инсулин, у которого на роль посредника предлагали цАМФ и цГМФ, а также ионы кальция и даже перекись водорода, но убедительных доказательств в пользу какого-нибудь одного вещества до сих пор нет. Многие исследователи считают, что в таком случае посредниками могут выступать химические соединения, структура которых полностью отличается от структуры уже известных науке посредников.

Выполнив свою задачу, гормоны либо расщепляются в клетках-мишенях или в крови, либо транспортируются в печень, где расщепляются, либо, наконец, удаляются из организма в основном с мочой (например, адреналин).

Химическая природа гормонов различна - белки, пептиды, производные аминокислот, стероиды, жиры. Гормоны, синтезом которых занята эндокринная система, обеспечивают наше физическое, половое и умственное созревание, позволяют организму адаптироваться к условиям окружающей среды. Только действию гормонов мы обязаны, к примеру, постоянством содержания глюкозы в крови и других жизненно важных функций. Гормоны имеют различную химическую структуру. Это приводит к тому, что они имеют разные физические свойства.

Гормоны разделяют на водо- и жирорастворимые. Принадлежность к какому-то из этих классов обуславливает их механизм действия. Это объясняется тем, что жирорастворимые гормоны могут спокойно проникать через клеточную мембрану, которая состоит преимущественно из бислоя липидов.

Эндокринные железы (железы внутренней секреции) - железы и параганглии, синтезирующие гормоны, которые выделяются в кровеносные (венозные) или лимфатические капилляры. Эндокринные железы не имеют выводных протоков.

К железам внутренней секреции относятся:

Щитовидная железа

Паращитовидные железы

Вилочковая железа (тимус)

Надпочечники

Параганглии

Половые железы - яички и яичники

Инкреторная часть поджелудочной железы.

Гипоталамо-гипофизарная система (гипоталамус, гипофиз).

Структура эндокринной системы демонстрирует реализованную в живом организме стратегию иерархически организованного централизованного управления. Несмотря на популярность концепции диффузной нейроэндокринной системы, следует признать, что централизованные механизмы управления гормональным статусом организма играют все же первостепенную роль. С точки зрения теории сложных систем это также означает, что нет антагонистического противоречия между жестко иерархически построенной системой и периферической диффузной активностью локальных источников гормонов.

Итак, центральным органом этой системы, объединяющим нервные и гуморальные рычаги управления, служит гипоталамус. Эмбриональные закладки гипоталамуса и гипофиза относятся к одной группе клеток, и эта теснейшая связь, как структурная, так и функциональная, сохраняется между ними на протяжении всей последующей жизни.

Схематически управление эндокринной системой можно представить себе как управленческую пирамиду с кольцеобразно замкнутыми на разных уровнях ветвями обратной связи. Грубо говоря, гипоталамус вырабатывает либерины и статины, которые управляют активностью аденогипофиза; аденогипофиз выделяет тропные гормоны, которые направляются к удаленным железам-мишеням (надпочечник, щитовидная железа, половые железы) и несут им химически закодированные распоряжения об усилении или торможении секреции их собственных гормонов; периферические железы усиливают или уменьшают секрецию гормонов, которые воздействуют уже непосредственно на висцеральные органы-мишени. При этом следует подчеркнуть, что число разновидностей и количество молекул выделяемых гормонов увеличивается в этом ряду в геометрической прогрессии: гипоталамус вырабатывает единичные молекулы статинов и либеринов, гипофизвыделяет уже заметно большие количества тройных гормонов, а периферические (исполнительные) железы продуцируют специфические гормоны в количестве, необходимом для обработки всех органов-мишеней. Так в этой иерархической системе организован каскад усиления потока информационных молекул; однако, как и в каждой кибернетической системе, в управление этим потоком вмешиваются обратные связи, обеспечивающие тонкую подстройку потока информации к тем реальным событиям, которые происходят «на местах». Выделяют два контура регуляции по принципу обратной связи в деятельности эндокринной системы: первый - тормозящее влияние тропных гормонов гипофиза на секрецию нейропептидов гипоталамусом. Второй - влияние гормонов периферических желез как на гипоталамус, так и на аденогипофиз. Первый контур представляет собой короткую петлю (все события ограничиваются объемом гипоталамус-гипофиз, т.е. путь гормонов по петле обратной связи составляет не более нескольких сантиметров), второй - длинную петлю (в регуляцию включены периферические железы, удаленные от места расположения гипофиза и гипоталамуса на десятки сантиметров).

Следует отметить, что периферические железы также связаны между собой многочисленными и не до конца изученными связями нижнего уровня. Нарушения деятельности любой из желез внутренней секреции приводят к расстройству всей системы. В некоторой степени эти расстройства могут быть компенсированы наличием диффузно распределенных по разным органам железистым клеткам. Однако они не способны справиться с серьезными нарушениями в работе любой из важнейших специализированных эндокринных желез.

Гипофиз (от греч. hypóphysis - отросток), нижний мозговой придаток (hypophysis cerebri, glandula pituitaria), железа с внутренней секрецией, играющая у всех позвоночных животных и у человека ведущую роль в гормональной регуляции. Г. расположен в турецком седле основной кости черепа, у основания головного мозга и связан с ним посредством ножки (воронки), представляющей собой вырост дна 3-го мозгового желудочка. Форма, размер и вес Г. различны у разных видов и зависят от возраста и физиологического состояния организма. У человека Г. весит 0,5-0,6 г. В Г. различают три доли: переднюю (железистую), среднюю (промежуточную) и заднюю (нервную). Передняя и средняя доли закладываются у зародыша в виде выпячивания эпителия крыши первичной ротовой полости; задняя доля образуется из дна воронки промежуточного мозга. Эмбриональный зачаток передней и средней долей в дальнейшем отделяется от эпителия первичной ротовой полости, растет по направлению к мозгу и срастается с зачатком задней доли. Лишь у некоторых хрящевых рыб связь передней доли Г. с эпителием первичной ротовой полости сохраняется и у взрослых организмов. У одних млекопитающих, например у кошки, задняя доля Г. имеет полость, сообщающуюся с полостью 3-го желудочка, у других, например у собаки, полость сохраняется только в ножке, соединяющей Г. с промежуточным мозгом; у некоторых млекопитающих (например, у кролика и у всех приматов) задняя доля и ножка Г. лишены полости и представляют собой плотные образования. У взрослого организма Г. тесно связан анатомически с головным мозгом. Г. снабжен большим количеством нервных волокон, вступающих в него через ножку из гипоталамической области (см. Гипоталамус) и по стенкам гипофизарных артерий - из нервного сонного сплетения.

Передняя доля Г. взрослого организма состоит из железистого эпителия, в котором выделяют 3 типа клеток, различающихся по способности окрашиваться кислыми или основными красками: хромофобные, или главные, клетки; оксифильные, или эозинофильные, клетки и базофильные клетки. Хромофобные клетки - резервный материал, из которого развиваются оксифильные и базофильные клетки. Соотношение оксифильных и базофильных клеток в передней доле Г. меняется в зависимости от пола, возраста и физиологического состояния организма. Так, после удаления щитовидной железы (тиреоидэктомия) количество оксифильных клеток резко уменьшается, вплоть до полного исчезновения, базофильные клетки, дегенерируя, превращаются в т. н. клетки тиреоидэктомии; после кастрации базофильные клетки гипертрофируются и превращаются в т. н. клетки кастрации. Изменения в клеточном составе передней доли Г., наступающие после удаления щитовидной железы или кастрации, могут быть предотвращены или устранены введением тироксина или половых гормонов. Средняя доля Г. состоит из эпителиальной ткани. Задняя доля Г. образована нейроглией, в которой содержатся большие пирамидальные или веретенообразные клетки, т. н. питуициты. Наиболее сложна и разнообразна физиологическая роль передней доли Г., от нормальной функции которой зависят рост и размножение, основной, углеводный, минеральный, жировой и белковый обмен. Из экстракта передней доли Г. выделено 7 гормонов: гормон роста, или соматотропный гормон, тиреотропный гормон, фолликулостимулирующий гормон, лютеинизирующий гормон, лютеотропный гормон, пролактин (лактогенный) и адренокортикотропный гормон (АКТГ). Все гормоны передней доли имеют белковую природу и получены в очищенном виде, некоторые из них, например гормон роста и лактогенный, выделены в кристаллической форме, др. синтезированы (например, АКТГ). Тиреотропный и гонадотропные гормоны продуцируются базофильными клетками, которые в соответствии с этим делят на два типа: т. н. тиреотрофы и гонадотрофы. Оксифильные клетки вырабатывают гормон роста и пролактин. Вопрос о клетках, продуцирующих АКТГ, не решен; вероятно, он образуется базофилами.

Гормон роста. Хирургическое удаление Г. (гипофизэктомия) у молодого животного приводит к остановке роста. Инъекции таким животным гипофизарного экстракта, содержащего гормон роста, восстанавливают у них нормальный рост. Введение гормона роста молодым растущим животным резко стимулирует рост и приводит к гигантизму (в эксперименте были получены гиганты амбистомы, крысы, собаки и др. животных): у человека избыточное выделение гормона роста вызывает заболевание с явлениями гигантизма или акромегалии. Пониженное выделение гормона роста обусловливает карликовый рост (см. Нанизм). Фолликулостимулирующий, лютеинизирующий и лютеотропный гормоны. Атрофия половой системы, наступающая после удаления Г., может быть предотвращена введением гонадотропных гормонов. У инфантильных животных введение этих гормонов вызывает преждевременное половое созревание. Инъекция гипофизарного экстракта, содержащего гонадотропные гормоны, лягушкам вызывает у них икрометание и сперматогенез в осеннее и зимнее время; из икры после оплодотворения развиваются нормальные головастики. Фолликулостимулирующий гормон регулирует рост фолликулов в яичниках и сперматогенез. Лютеинизирующий гормон вызывает у самок преждевременный рост фолликулов, овуляцию, образование жёлтого тела, а у самцов - секрецию мужского полового гормона межуточными клетками семенника, т. е. клетками Лейдига. Лютеотропный гормон поддерживает функцию жёлтого тела; у некоторых животных (крыса, овца) этот гормон вызывает лактацию. Пролактин (лактогенный гормон). Участвует в регуляции процесса выделения молока. Удаление передней доли Г. у лактирующих самок прекращает секрецию молока; введение пролактина восстанавливает лактацию. Тиреотропный гормон. Удаление передней доли Г. вызывает атрофию щитовидной железы и, как следствие этого, снижение основного обмена. Инъекции гипофизарного экстракта, содержащего тиреотропный гормон, вызывают увеличение щитовидной железы и усиление её функции. А КТГ стимулирует деятельность коры надпочечников и выделение ею кортикостероидных гормонов, а также восстанавливает атрофированную в результате удаления Г. железу. Влияние передней доли Г. на обмен веществ осуществляется через гормон роста, АКТГ и др. гормоны.

Средняя доля Г. вырабатывает гормон интермедии, или меланоцитостимулирующий гормон, влияющий на окраску кожи рыб и земноводных. Физиологическое значение этого гормона у птиц и млекопитающих неясно.

Задняя доля Г. принимает участие в регуляции уровня кровяного давления, мочеотделения (гормон вазопрессин) и деятельности мускулатуры матки (гормон окситоцин). Вазопрессин и окситоцин образуются в паравентрикулярных и супраоптических ядрах гипоталамуса, откуда они поступают в заднюю долю Г. Оба гормона синтезированы.

Функции Г. зависят от условий внешней среды. Из опытов, проводимых на птицах и млекопитающих, установлено, что свет регулирует гонадотропную, тиреотропную и адренокортикотропную функции Г.; действие света на Г. осуществляется через центральную нервную систему. Доказано также, что эндокринные функции Г. находятся под контролем гипоталамуса, в котором вырабатываются особые нейрогуморальные вещества пептидной природы - т. н. высвобождающие, или релизинг-факторы, стимулирующие гуморальным путём секрецию гормонов Г. (см. Нейросекреция).

Патология Г. Нарушения нормальной деятельности Г. могут выражаться повышением (гиперпитуитаризм) или ослаблением (гипопитуитаризм) его отдельных функций, реже - в полном их выпадении. Повышение внутренней секреции Г. проявляется расстройствами роста и развития в детском возрасте - гигантизмом, у взрослых - акромегалией. Ослабление или выпадение функций Г. в детском возрасте приводит к задержке роста (карликовый рост), психического развития, инфантилизму, атрофии щитовидной железы и коры надпочечников, глубоким изменениям углеводного и жирового обмена, понижению окислительных процессов и др.; у взрослых - к ожирению, прекращению полового цикла, атрофии щитовидной, половых желёз и коры надпочечников и др. В механизме развития ряда т. н. гипофизарных заболеваний (Иценко - Кушинга болезнь, диабет несахарный, преждевременное половое созревание и др.) решающее значение имеют первичные нарушения деятельности гипоталамуса.

Щитовидная железа (glandula thyreoidea), специализированный эндокринный орган у позвоночных животных и человека; вырабатывает и накапливает иодсодержащие гормоны, участвующие в регуляции обмена веществ и энергии в организме.

Анатомия. Щ. ж. развивается у зародышей из эпителия жаберных мешков (карманов), закладывающихся в глоточной кишке в результате преобразования поджаберного железистого желобка (эндостиля) низших хордовых. Непарная Щ. ж. круглоротых расположена под нижней стенкой жаберной части кишечника, у рыб - у переднего края жаберных артерий (у костистых охватывает брюшную аорту в области передних жаберных дуг, у двоякодышащих намечается разделение её на 2 части).

Парная Щ. ж. земноводных находится в области подъязычного аппарата (у хвостатых позади 2-й дуги, у бесхвостых - под задними рожками). Непарная Щ. ж. пресмыкающихся часто разделена на 2 лопасти и располагается под трахеей. Пара Щ. ж. птиц лежит у основания бронхов. Щ. ж. млекопитающих состоит из двух долей, соединённых перешейком, но у некоторых распадается на 2 отдельные части. У низших позвоночных последняя (5-я) пара жаберных дуг даёт начало ультимобранхиальным тельцам, выделяющим гормон тиреокальцитонин. У млекопитающих эта ткань представлена т. н. С-клетками Щ. ж. У человека Щ. ж. полностью формируется к 8-9 мес. развития плода; состоит из 2 боковых долей и поперечного перешейка, соединяющего их близ нижних концов. Иногда от перешейка вверх отходит пирамидальная доля. Располагается на шее спереди дыхательного горла и на боковых стенках гортани, прилегая к щитовидному хрящу (отсюда название). Кзади боковые доли соприкасаются со стенками глотки и пищевода. Наружная поверхность Щ. ж. выпуклая, внутренняя, обращенная к трахее и гортани, вогнутая. Поперечник Щ. ж. около 50-60 мм,на уровне перешейка 6-8 мм. Масса около 15-30 г (у женщин несколько больше). Щ. ж. обильно снабжена кровеносными сосудами; к ней подходят верхние и нижние щитовидные артерии. Верхние шейный и звездчатый симпатические ганглии обеспечивают симпатическую иннервацию, а ветви блуждающего нерва - парасимпатическую.

Основная структурная и функциональная единица Щ. ж. - фолликул (шаровидной или геометрически неправильной формы), полость которого заполнена коллоидом, состоящим из иодсодержащего белка- тиреоглобулина. Фолликулы тесно прилегают друг к другу. Стенки фолликула выстланы однослойным железистым эпителием. Структуру Щ. ж. формирует и соединительнотканная строма, прилегающая к стенке фолликула и состоящая из коллагеновых и эластических волокон, с проходящими в ней сосудами и нервами. Форма, объём и высота клеток фолликулярного эпителия варьируют в зависимости от функционального состояния Щ. ж.: в норме эпителий кубический, при повышенной функциональной активности - высокий цилиндрический, при пониженной - плоский. Размеры комплекса Гольджи, число митохондрий и секреторных капель, содержащихся в тиреоидных клетках, увеличиваются в период активной секреторной деятельности. Число и длина микроворсинок, расположенных на апикальной поверхности эпителия и направленных в полость фолликула, также увеличиваются при повышении активности Щ. ж. Плотность, размеры, число и локализация цитоплазматических гранул характеризуют как процессы биосинтеза, так и выделения специфических продуктов.

Физиология. От нормальной функции Щ. ж. зависят такие основные биологические процессы, как рост, развитие и дифференцировка тканей. Щ. ж. секретирует 2 гормона - тироксин и трииодтиронин. Биологические эффекты тиреоидных гормонов в физиологических дозах проявляются в поддержании на оптимальном уровне энергетических и биосинтетических процессов в организме. Действие гормонов на процессы биосинтеза, а следовательно, и на рост и развитие организма опосредовано через регуляцию тканевого дыхания. Гормоны в высоких дозах усиливают все виды обмена веществ с преобладанием процессов катаболизма, расхода веществ и энергии в виде тепла, продуктов неполного и извращённого метаболизма. Механизм действия тиреоидных гормонов представляется этапами "узнавания" и восприятия сигнала клеткой и генерирования мол. процессов, определяющих характер ответной реакции. В клетках различных тканей обнаружены специфические белки-рецепторы, которые "узнают" гормон и включают биохимические реакции. Рост-активирующее влияние гормонов Щ. ж., связанное с усилением биосинтеза белков, реализуется через образование в ядрах клеток гормон-рецепторного комплекса, возбуждающего синтез информационной РНК и последующие этапы синтеза структурных белков и белков-ферментов. Функция Щ. ж. регулируется центр. нервной системой. В условиях постоянно меняющихся факторов внешней и внутренней среды коре головного мозга отводится ведущее значение в регуляции гипоталамо-гипофизарно-тиреоидной системы. Щ. ж. находится во взаимодействии и с др. железами внутренней секреции. Значительную роль в регуляции деятельности Щ. ж. принадлежит гипофизу: вырабатываемый им тиреотропный гормон стимулирует развитие и функции Щ. ж. См. также Нейросекреция.

Заболевания Щ. ж. у человека (воспалительные, см. Тиреоидит;опухоли; травмы; врождённая аномалия и др.) могут сопровождаться увеличением Щ. ж. (см. Зоб) и нарушением её функции: снижением продукции гормонов (гипотиреоз, вплоть до развития микседемы) или повышенным их образованием (см. Зоб диффузный токсический).

Околощитовидные железы,паращитовидные железы ( Glandulae parathyreoideae), органы внутренней секреции человека и позвоночных животных (исключая рыб). У ряда млекопитающих (мышь, крыса, крот, землеройка, ёж, свинья, тюлень) - 1 пара О. ж.; у других (летучая мышь, собака, кролик, кошка, морская свинка, верблюд, овца, коза) и у человека - 2 пары, расположенные на поверхности щитовидной железы или погруженные в её ткань. О. ж. состоят из железистой эпителиальной ткани (включая главные и оксифильные клетки, расположенные гнёздами и тяжами между капиллярами), покрытой соединительнотканной капсулой. Главные клетки многоугольной формы; их цитоплазма содержит большое число митохондрий, слабо базофильна и плохо окрашивается. Цитоплазма оксифильных клеток хорошо окрашивается кислыми красками. В клетках обоих типов обнаружены особые тельца, состоящие из эндоплазматических ретикулярных пластинок, служащих, вероятно, центрами синтетической активности клеток.

О. ж. вырабатывают паратиреоидный гормон (паратгормон), участвующий в регуляции обмена Са и Р в организме. Между концентрацией Са и Р в крови имеются реципрокные отношения. Гомеостаз Са и Р поддерживается влиянием на костную ткань и почки паратгормона, избыток которого вызывает деминерализацию костной ткани и вымывание из организма Са и Р. Излишек Р выделяется почками. При гиперпаратиреозе происходит размягчение костей, приводящее к их спонтанным переломам; при гипопаратиреозе наблюдается задержка развития зубов. Введение в организм паратгормона устраняет симптомы недостаточности О. ж. Удаление О. ж. приводит к появлению судорог (тетании), что обусловлено резким снижением концентрации Са в крови (с 9-11 до 4,5-5 мг%). Одновременно повышается содержание в крови Р. Приступы тетании могут наступить у животных с нормальными О. ж. при малом поступлении Са с пищей. Размеры О. ж. и их функциональное состояние зависят от уровня Са в крови.

Вилочковая железа (thymus, glandula thymus), зобная железа, тимус, внутренняя грудная железа, дольчатая железа внутренней секреции у позвоночных животных и человека. В. ж. развивается из энтодермального эпителия жаберных мешков.

У человека В. ж. закладывается на 6-й неделе развития. Зачатки В. ж. первоначально представлены только эпителиальной тканью. В процессе развития В. ж. строение её усложняется и она становится дольчатой. У человека В. ж. расположена в грудной полости в области верхнего межплеврального пространства переднего средостения. Она хорошо развита у новорождённых. К моменту рождения это самый большой лимфоидный орган, его ткань активнее всех других тканей организма продуцирует лимфоциты. Рост В. ж. продолжается до наступления половой зрелости, масса её к этому времени составляет 30-40 г; в дальнейшем происходит её обратное развитие. В. ж. снаружи покрыта соединительнотканной капсулой, от которой внутрь железы отходят перегородки, разделяющие её на дольки. В каждой дольке В. ж. различают корковое и мозговое вещество. Корковое вещество представляет собой эпителиальную ткань сетчатого строения, в петлях которой расположено большое количество лимфоцитов, что позволяет относить В. ж. к лимфоэпителиальным образованиям. В мозговом веществе, сходном по строению с корковым веществом, лимфоцитов меньше; в средней его части расположены слоистые эпителиальные тельца до 50 мкм в диаметре - тельца Гассаля - наиболее характерные структуры В. ж., образованные концентрически наслоёнными эпителиальными клетками. К 15 годам количество слоистых эпителиальных телец достигает максимума, после чего быстро убывает. Однако даже в старческом возрасте продолжается новообразование телец Гассаля. С возрастом корковая часть долек постепенно обедневает лимфоцитами. Редукция корковой части идёт быстрее, чем мозговой, но остатки её сохраняются даже после полного замещения вещества железы жировой тканью.

Функциональное значение В. ж. окончательно не выяснено. Имеются данные о сезонности функционирования В. ж. у низших позвоночных, об участии её в регуляции роста и минерального обмена в организме, а также в формировании специфического иммунитета. У птиц В. ж. рассматривают и как депо лабильных нуклеопротеидов, которые усиленно расходуются в периоды половой деятельности. В. ж. функционирует в тесной взаимосвязи с другими железами внутренней секреции (надпочечники, гипофиз, половые железы). В. ж. очень чувствительна к внешним воздействиям - физическим (облучение), химическим (многие канцерогены), гормональным (гормоны коры надпочечников, щитовидной, половых желёз и др.), на которые реагирует обратным развитием и атрофией. Кровоснабжение В. ж. осуществляется от внутренней артерии грудной железы и нижней щитовидной артерии; иннервация - ветвями блуждающего нерва, симпатического и диафрагмального нервов.

Встречаются отклонения от нормального развития В. ж.: аплазия (полное отсутствие), что обычно сочетается с другими пороками развития организма, и гипоплазия (недостаточное развитие В. ж.) - в комбинации с гипоплазией щитовидной железы и психической отсталостью. В некоторых случаях наблюдаются добавочные железы, расположенные на шее. Гиперплазия (значительное увеличение) В. ж. может препятствовать нормальному развитию соседних органов, вызвать нарушение дыхания и внезапную смерть; нередко служит проявлением тимико-лимфатического состояния.

Надпочечники, надпочечные железы (glandulae suprarenales), парный эндокринный орган у высших позвоночных животных и человека. В каждом Н. различают поверхностную часть (кору, или корковый слой), построенную из стероидогенной ткани и продуцирующую стероидные гормоны, и внутреннюю (мозговое вещество) - построенную из хромаффинной, или адреналовой, ткани и продуцирующую катехоламиновые гормоны. Н. одеты соединительно-тканной капсулой. У человека они в виде шапочек охватывают сверху почки (рис. 1).

Как обособленные органы, включающие в себя две разнородные железистые ткани, Н. развились в эволюции позвоночных не сразу. У рыб стероидогенная и хромаффинная ткани образуют в почечной области самостоятельные скопления. У земноводных такие скопления прилегают друг к другу, не теряя своей самостоятельности; у некоторых пресмыкающихся они пронизывают друг друга. Стероидогенная ткань Н. имеет у всех позвоночных мезодермальное происхождение, тогда как хромаффинная происходит от того же эктодермального зачатка, который даёт начало симпатическим нейронам. Раздельное кровоснабжение коры и мозгового вещества осуществляется несколькими артериями; богатая венозная сеть соединяется в одну центральную вену Н. Лимфатические сосуды образуют два сплетения - под капсулой и в мозговом слое. Иннервируются Н. волокнами чревного нерва, которые образуют надпочечниковое сплетение, соединяющееся с почечным и солнечным (см. Вегетативная нервная система).

Корковый слой, или кора, Н. у млекопитающих животных и человека разделён на 3 зоны, выполняющие разные функции: клубочковую, пучковую и сетчатую (рис. 2). Клетки клубочковой зоны собраны в клубочки и лежат под капсулой. Клетки пучковой, самой широкой зоны коры расположены прядями или пучками и пронизаны расширяющимися в этой зоне капиллярами. Клетки сетчатой зоны окружают мозговое вещество. Гормонами коры Н. являются гидрокортизон, альдостерон и кортикостерон, которые обнаруживаются в оттекающей от Н. крови. Всего из коры Н. выделено свыше 40 стероидных соединений - кортикостероидов; 5 из них (кортикостерон, гидрокортизон, кортизон, альдостерон, дезоксикортикостерон) обладают высокой биологической активностью. В зависимости от характера физиологического действия стероидные соединения коры Н. делят на следующие группы: минералокортикоиды (альдостерон, дезоксикортикостерон), глюкокортикоиды (кортикостерон, гидрокортизон, кортизон), андрогены (андростендион, дегидроэпиандростерон, тестостерон и др.), эстрогены (эстрон, эквиленин и др.). Основной минералокортикоид - альдостерон, физиологический регулятор минерального обмена - образуется в клубочковой зоне коры. У человека его содержание в плазме крови около 0,08 мкг/100 мл, экскреция с мочой 12-14 мкг/сут. Источник глюкокортикоидов - пучковая зона коры Н. В содержании двух основных из них - гидрокортизона и кортикостерона наблюдается определённая видовая специфичность. Так, у приматов основной глюкокортикоид - гидрокортизон; у крыс и кроликов - кортикостерон; у крупного рогатого скота, собак и кошек - равные количества того и другого.

Функции коры Н. контролируются адренокортикотропным гормоном гипофиза (АКТГ) и обнаруживают суточные колебания, обусловленные преимущественно действием света (см. Биологические ритмы, Фотопериодизм). Гормоны коры Н. играют важную роль в адаптации организма к неблагоприятным условиям. Реакция системы гипофиз - кора Н. на неблагоприятные условия (холод, инфекция, эмоциональное возбуждение, мышечная работа и др.) стереотипна и выражается в выделении АКТГ и кортикостероидов (см. Адаптационный синдром, Стресс). Активация этой системы осуществляется через центральную нервную систему (гипоталамус, кора головного мозга). Нарушения функций коры Н., возникающие при её опухолевых или инфекционных поражениях, а также изменениях в цепи биосинтеза стероидных гормонов, могут привести к ряду заболеваний (Иценко - Кушинга болезнь, Аддисонова болезнь, адреногенитальный синдром и др.).

В мозговом веществе Н. у млекопитающих животных и человека, помимо хромаффинной ткани, имеются немногочисленные нейроны. Мозговое вещество вырабатывает 2 гормона - адреналин и норадреналин. Кроме того, в оттекающей от Н. крови обнаружен в небольшом количестве предшественник этих гормонов - диоксифенилэтиламин (дофамин), который, возможно, является самостоятельным гормоном. В Н. человека содержится 0,5 мг адреналина и 0,1 мг норадреналина на 1 г ткани. В Н. животных разных видов содержание их неодинаково. Адреналин усиливает поглощение О2 тканями, стимулирует обмен веществ, повышает систолическое артериальное давление, увеличивает минутный объём сердца и частоту сердцебиений. Норадреналин повышает систолическое и диастолическое артериальное давление, снижает минутный объём, замедляет сердцебиение. Оба гормона стимулируют гликогенолиз в печени, в результате чего увеличивается содержание сахара в крови. Нарушение функции мозгового слоя Н. может быть обусловлено его опухолями - феохромоцитомой и др. См. также Катехоламины, Стероиды.

Поджелудочная железа, панкреас (pancreas), крупная пищеварительная железа животных и человека, обладающая внешнесекреторной (экзокринной) и внутрисекреторной (эндокринной) функциями; участвует в пищеварении и регуляции углеводного, жирового и белкового обмена. Среди беспозвоночных обособленная П. ж. (её считают отделившейся частью печени) есть только у головоногих моллюсков. У позвоночных П. ж. располагается в брыжейке средней кишки (у амниот - двенадцатиперстной кишки). в непосредственной близости от желудка (отсюда название). У миног, двоякодышащих рыб П. ж. скрыта в стенке кишечника; у миксин, осетровых и некоторых костистых рыб - в ткани печени (в последнем случае П. ж. вместе с печенью образует единый орган - hepatopancreas).

Экзокринная часть П. ж. имеет сложное альвеолярно-трубчатое строение; она покрыта тонкой соединительнотканной капсулой, от которой отходят прослойки соединительной ткани, разделяющие паренхиму П. ж. на отдельные дольки. Большая часть долек представлена концевыми секреторными отделами - ацинусами, клетки которых выделяют поджелудочный (панкреатический) сок. Выводные протоки долек сливаются в общие выводные протоки железы. Эндокринная часть П. ж. представлена особыми клеточными группами, расположенными в виде небольших островков (скоплений) в толще железистых долек (см. Лангерганса островки), хорошо снабженных кровеносными сосудами и не имеющих выводных протоков.

У человека П. ж. расположена в забрюшинном пространстве позади и ниже желудка поперёк позвоночника на уровне 1-2-го поясничных позвонков в виде уплощённого тяжа, вытянутого в горизонтальном направлении от двенадцатиперстной кишки до селезёнки (см. рис.). Длина П. ж. 15-25 см, ширина 3-9 см (в области головки), толщина 2-3 см, масса 70-80 г. Головка П. ж. (утолщённая правая часть) расположена в петле двенадцатиперстной кишки; хвост (суженная левая часть) соприкасается с селезёнкой. Тело П. ж. имеет вид 3-гранной призмы, спереди покрыто брюшиной. От хвоста к головке П. ж. проходит главный выводной проток, открывающийся в двенадцатиперстную кишку. Кровоснабжение П. ж. осуществляется через верхнюю и нижнюю поджелудочно-двенадцатиперстные артерии. Отток крови происходит в систему воротной вены. П. ж. имеет хорошо развитую сеть лимфатических сосудов. Иннервируется П. ж. парасимпатической и симпатической нервной системой (ветви чревного, верхнего брыжеечного, почечного и селезёночного сплетений). Из коры головного мозга импульсы идут в П. ж. через гипоталамус по парасимпатическим нервным волокнам к ацинарным клеткам, островкам и гладкомышечным клеткам протоков; симпатические волокна идут к кровеносным сосудам.

XX век характеризуется бурным развитием науки. Еще в начале века в учебниках физики писали, что атом неделим. Однако в скором времени атом был расщеплен, в результате чего была освобождена огромная энергия, которая преобразила мир (атомная бомба, атомная электростанция). Телевидение из фантастики стало реальностью, продолжается интенсивная компьютеризация всех отраслей народного хозяйства, активно осваиваются Мировой океан, космос, полярные области планеты, пустыни и горы, все чаще и чаще в различных уголках мира возникают военные конфликты. И в этом непредсказуемом мире человечество все чаще сталкивается с воздействием экстремальных условий жизнедеятельности, то есть со стрессами, которые и вызывают различные срывы высшей нервной деятельности в виде неврозов и неврозоподобных состояний.

Концепция стресса впервые была сформулирована в 1936 г. канадским физиологом Гансом Селье. Он ее разработал, проверил в экспериментах на животных и сделал попытку построить новую единую теорию медицины. Концепция Ганса Селье оказала большое влияние на различные направления науки о человеке - медицину, психологию, социологию и другие области знаний. Предпосылкой возникновения и широкого распространения учения о стрессе можно считать возросшую актуальность проблемы защиты человека от воздействия неблагоприятных факторов внешней среды.

Сегодня представители самых разных научных дисциплин весьма интенсивно исследуют стресс и его значение для больного и здорового человека.

Стресс многолик в своих проявлениях. Он может спровоцировать начало практически любого заболевания. В связи с этим в настоящее время растет потребность в расширении наших знаний о стрессе и способах его предотвращения и преодоления.

Однако это вовсе не значит, что стресс является только злом, с которым надо бороться и которое надо избегать в нашей жизни. Стресс, как указывал Г. Селье, «является не только злом, не только бедой, но является и великим благом, ибо без стрессов различного характера наша жизнь была бы похожа на какое-то бесцветное прозябание».

Стресс, по мнению Г. Селье, многолик: это не только повреждения и болезни, «но и важнейший инструмент тренировки и закаливания, ибо стресс помогает повышению сопротивляемости организма, тренирует его защитные механизмы». В этом, естественно, состоит положительная роль стресса, его важное социальное значение. Стресс является нашим верным союзником в непрекращающейся адаптации организма к любым изменениям в окружающей нас среде. «Поэтому правильное понимание положительных и отрицательных сторон стресса, - пишет О. Г. Газенко, - их адекватное использование или предотвращение играют важную роль в сохранении здоровья человека, создании условий для проявления его творческих возможностей, плодотворной и эффективной трудовой деятельности».

Физиология. Основы современных представлений о физиологии П. ж. и регуляции её деятельности были заложены И. П. Павловым с сотрудниками. У человека за сутки выделяется 1,5-2 л, у собаки - 600-800 мл поджелудочного сока - бесцветной жидкости щелочной реакции, без запаха, состоящей из неорганических (HCO-3, Cl-, Na+, Ca2+, Mg2+) и органических (главным образом белки, ферменты) веществ. Три основные группы ферментов - протеазы, липазы, амилаза - обеспечивают переваривание белков, жиров и углеводов. Наибольшее количество сока у человека и собаки выделяется на углеводную пищу, затем - на мясную, наименьшее - на жирную. Ферментный состав сока меняется в зависимости от характера питания. Секреция начинается через 1-3 мин после приёма пищи и продолжается 6-10 ч. Натощак она незначительна. Внутрисекреторная функция П. ж. состоит в выработке ряда гормонов, в том числе инсулина, глюкагона, поступающих непосредственно в кровь. Деятельность П. ж. регулируется нервно-гормональными механизмами. На П. ж. оказывают влияние гормоны пищеварительного тракта - секретин, панкреозимин, гастрин, а также гормоны щитовидной и паращитовидной желёз, гипофиза, надпочечников. Существует тесная функциональная взаимосвязь между П. ж. и др. органами пищеварительной системы. Наиболее частые заболевания её -острые и хронические панкреатиты. При нарушении выработки инсулина развивается диабет сахарный.

Мужская половая система человека представляет собой совокупность органов системы размножения у мужчин. Половые органы мужчины разделяют на внутренние и наружные. К внутренним относятся половые железы - яички (с их придатками), в которых развиваются сперматозоиды и вырабатывается половой гормон тестостерон, семявыносящие протоки, семенные пузырьки, предстательная железа, бульбоуретральные железы. К наружным половым органам относятся мошонка и половой член. Мужской мочеиспускательный канал кроме выведения мочи, служит для прохождения семени, поступающей в него из семявыбрасывающих протоков.

Же́нская полова́я систе́ма человека состоит из двух основных частей: внутренних и наружных половых органов. Наружные половые органы в совокупности носят название вульва.

Внутренние половые органы

Фаллопиевы трубы

Влагалище

Наружные половые органы

Большие половые губы

Малые половые губы

Девственная плева

Определяющей возможностью зачатия ребенка для мужчины является способность образования полноценных половых клеток - сперматозоидов (живчиков). Развитие мужских половых клеток находится под постоянным гормональным регулированием и является длительным и сложным процессом. Этот процесс называется сперматогенезом.

В возрасте до 5 лет мужские половые железы (яички) находятся в состоянии относительного покоя, в 6-10 лет в них появляются единичные самые первые клетки сперматогенеза - сперматогонии. Полное формирование сперматогенеза приходится на 15-16 лет.

Весь процесс спермообразования до момента полного созревания занимает примерно 72 дня. Его условно делят на четыре стадии:

размножение -> рост -> созревание -> формирование.

На каждой из стадий сперматогенеза эволюцию сперматозоида условно можно описать так:

сперматогонии –> сперматоциты –> сперматиды –> сперматозоиды.

Весь процесс формирования сперматозоида протекает при температуре, которая на 1-2°С ниже температуры внутренних областей тела. Более низкая температура мошонки частично определяется ее положением, а частично - сосудистым сплетением, образуемым артерией и веной семенника и действующим как противоточный теплообменник. Сокращения особых мышц перемещают семенники ближе или дальше от тела в зависимости от температуры воздуха, чтобы поддерживать температуру в мошонке на уровне, оптимальном для образования спермы. Если мужчина достиг половой зрелости, а семенники не опустились в мошонку (состояние, называемое крипторхизмом), то он навсегда остается стерильным, а у мужчин, носящих слишком тесные трусы или принимающих очень горячие ванны, образование спермиев может так сильно понизиться, что это приведет к бесплодию. Очень низкие температуры так же прекращают выработку спермы, но не уничтожают хранящуюся.

Процесс сперматогенеза протекает непрерывно на всем протяжении половой активности организма (у большинства мужчин практически до конца жизни), но выделяется сперма во внешнюю среду лишь в определенные моменты. При половом возбуждении сперматозоиды, накопившиеся в придатке яичка, вместе с секретом придатков движутся по семявыводящему протоку к семенным пузырькам. Секрет придатков разжижает среду, обеспечивая большую подвижность сперматозоидов и питает сперматозоиды при извержении семени. При половом возбуждении одновременно вырабатывается и секрет предстательной железы, он выбрасывается в задний отдел мочеиспускательного канала. Секрет железы активизирует подвижность сперматозоидов. Вся эта смесь (выделения предстательной железы, сперматозоиды, выделения семенных пузырьков) и образует сперму и в момент наибольшего полового возбуждения происходит выброс этой смеси наружу – эякуляция. После эякуляции сперматозоиды сохраняют свою жизнеспособность непродолжительное время - 48–72 часа.

Основной функцией женской половой системы является репродуктивная функция. Это значит, что зачатие нового организма и его вынашивание происходит в организме женщины. Эта функция выполняется путем взаимодействия нескольких органов, относящихся к женской половой системе. Это взаимодействие обеспечивает гормональная регуляция. Именно эта регуляция является главным звеном в реализации репродуктивной функции женского организма.

Железа гипофиз, располагающаяся в головном мозге, является одним из высших отделов гормональной регуляции во всех внутренних органах и системах в организме человека. Гипофиз выделяет гормоны, регулирующие работу других эндокринных желез – половых желез (ЛГ и ФСГ), щитовидной железы (ТТГ – тиреотропный гормон), надпочечников (АКТГ – адренокортикотропный гормон). Также гипофиз выделяет ряд гормонов, которые регулируют работу – половых органов (окситоцин), мочевыделительной системы (вазопрессин или антидиуретический гормон), молочной железы (пролактин, окситоцин), костной системы (СТГ или гормон роста).

Работу половой системы регулируют несколько «основных» гормонов, выделяемых гипофизом: ФСГ, ЛГ, пролактин. ФСГ – фолликулостимулирующий гормон - действует на процесс созревания фолликулов. Таким образом при недостаточной/избыточной концентрации этого гормона нарушается процесс созревания фолликулов, что может привести к бесплодию («Причины женского бесплодия»). ЛГ – лютеинизирующий гормон – учавствует в овуляции и образовании желтого тела. Пролактин (молочный гормон) влияет на секрецию молока во период лактации. Пролактин относится к гормонам антагонистам (соперникам) ФСГ и ЛГ, т.е. повышение концентрации пролактина в организме женщины вызывает нарушение работы яичников, что может привести к бесплодиюКроме этого, работу половой системы женщины регулируют гормоны, выделяемые другими эндокринными железами: гормоны щитовидной железы - Т4 (тироксин), Т3 (трийодтиронин); гормоны надпочечников – ДЭА и ДЭА-С. Нарушение функции данных эндокринных желез приводит к нарушению работы репродуктивной системы и соответсвенно к бесплодию

Циклические изменения в организме женщины или менструально-овариальный цикл

В организме женщины каждый месяц происходит изменение слизистой оболочки матки (менструальный цикл) и изменение в яичниках (овариальный цикл). Таким образом, правильно говорить о менструально-овариальном цикле. Менструально–овариальный цикл длится от первого дня менструации до первого дня следующей менструации (от 21 до 35 дней).

Овариальный (яичниковый) цикл состоит из созревания фолликула (фолликулогенез), овуляции и образования желтого тела.

Под влиянием гормона ФСГ в начале менструального цикла начинается созревание фолликулов в яичнике – так назывемая фолликулиновая фаза менструального цикла. ФСГ воздействует на первичные фолликулы, что приводит к их росту. Обычно в рост вступают несколько первичных фолликулов, но уже ближе к середине цикла один из фолликулов становится "лидером". В процессе роста лидирующего фолликула его клетки начинают вырабатывть гормон эстрадиол, вызывающий утолщение слизистой оболочки матки.

В середине менструального цикла, когда фолликул достигает 18-22 мм, гипофиз выделяет лютеинизирующий гормон - ЛГ (овуляторный пик), приводящий к овуляции (разрыв фолликула и выход из него яйцеклетки в брюшную полость). Затем под влиянием опять же ЛГ образуется желтое тело – эндокринная железа, которая выделяет прогестерон - «гормон беременности». Под влиянием прогестерона изменяется слизистая оболочка матки (лютеиновая фаза цикла), что подготавливает ее к беременности. Таким образом бесплодие может возникать и из-за недостаточной функции желтого тела.

Менструальный цикл - это изменения слизистой оболочки матки (эндометрия), происходящие вместе с яичниковым циклом. В фолликулиновую фазу цикла происходит утолщение эндометрия (под влиянием гормона эстрадиола). После овуляции гормон желтого тела (прогестерон) вызывает в клетках эндометрия накопление большого количества питательных веществ для эмбриона – лютеиновая фаза цикла.

При отсутствии оплодотворения возникает отторжение слизистой оболочки матки – менструация. Вместе с менструацией происходит созревание первичных фолликулов - новый менструальный цикл.

В ходе этого урока мы ознакомимся с уровнями организации нашего организма и его системами органов.

Тема: Общий обзор организма человека

Урок: Системы органов в организме. Уровни организации

1. Уровни организации

Наш организм. Это определение кажется настолько привычным и понятным, что мы редко задумываемся над его сущностью. И на вопрос: «что же это все-таки такое?» многие могут затрудниться ответить.

Организм - это определенный комплекс или система, реагирующая как единое целое на различные изменения внешней среды. Эта система относительно стабильна, несмотря на то что состоит из многих органов. Органы в свою очередь состоят из тканей, ткани - из клеток, клетки - из молекул.

Молекулы, клетки, ткани, органы, системы органов - все эти этажи, или разные уровни живого, объединены в организме человека в единое и неразделимое целое.

Живые организмы построены из особых химических соединений - органических веществ (белков, жиров, углеводов, нуклеиновых кислот). Они входят в состав любой живой клетки. Эти крупные молекулы играют роль строительных блоков, которые создают сложные комплексы. Вещества клетки расположенные не хаотично, а образуют упорядоченные структуры - органоиды, которые обеспечивают процессы жизнедеятельности клетки. Организм человека - многоклеточное государство. Клетки тела человека неодинаковы, отличаются своей специализацией. Клетки одной специальности объединяются в группы. Вместе с межклеточным веществом они образуют ткани. Из нескольких тканей складываются органы. Органы, выполняющие единую функцию и имеющие общий план строения и развития, объединятся в системы органов. Все системы органов взаимосвязаны и составляют единый организм.

В организме человека выделяют 10 основных систем органов.

2. Покровная система

Покровная система - состоит из кожи и слизистых оболочек, выстилающих полости внутренних органов, дыхательных путей, пищеварительного тракта. Функция этой системы защита организма от механических повреждений, высыхания, колебания температур, проникновения болезнетворных бактерий.

3. Опорно-двигательная система

Опорно-двигательная система состоит из скелета и прикрепленных к нему мышц. Она позволяет человеку стоять, двигаться, выполнять сложную работу, защищает внутренние органы от повреждения.

4. Пищеварительная система

Пищеварительная система состоит из пищеварительного тракта (ротовой полости, глотки, пищевода, желудка и кишечника) и пищеварительных желез: слюнных, желез желудка и кишечника, поджелудочной железы, печени. Функции пищеварительной системы - переваривание пищи и всасывание питательных веществ в кровь.

5. Кровеносная система

Кровеносная система состоит из сердца и кровеносных сосудов. Эта система снабжает органы нашего тела питательными веществами и кислородом, выносит из них углекислый газ и другие ненужные продукты жизнедеятельности, выполняет защитную функцию, участвуя в иммунитете.

6. Лимфатическая система

Лимфатическая система образована лимфатическими узлами и лимфатическими сосудами. Принимает участие в образовании иммунитета и поддержании постоянства внутренней среды организма.

7. Дыхательная система

Система органов дыхания состоит из дыхательных путей (носовой полости, носоглотки, глотки, гортани, трахеи и бронхов) и дыхательной части - легких. Функция дыхательной системы обеспечение газообмена между внешней средой и организмом.

8. Выделительная система

Выделительная система образована почками, в которых образуется моча, содержащая вредные продукты обмена веществ, и мочевыносящими органами - мочеточниками, мочевым пузырем и мочеиспускательным каналом.

9. Половая система

Половая система состоит из половых желез, внутренних и наружных половых органов. Функция половой системы - обеспечение процесса деторождения.

10. Нервная система

Нервная система состоит из головного и спинного мозга и отходящих от них нервов и нервных узлов. Она регулирует работу органов, обеспечивает их согласованную деятельность и приспособление к условиям среды. Через органы чувств она осуществляет связь с окружающей средой. Благодаря нервной системе осуществляется умственная деятельность человека, определяется его поведение.

11. Эндокринная система

Похожие функции выполняет и эндокринная система , образованная железами внутренней секреции, такими как гипофиз, щитовидная железа, надпочечники и некоторые другие железы. Они выделяют гормоны.

Системы органов работают не изолированно, их деятельность взаимосвязана. Это обеспечивает жизнедеятельность всего организма человека.

Организм - это совокупность систем органов, связанных между собой и с окружающей средой.

1. Колесов Д. В., Маш Р. Д., Беляев И. Н. Биология 8 М.:Дрофа

2. Пасечник В. В., Каменский А. А., Швецов Г. Г. / Под ред. Пасечника В. В. Биология 8 М.:Дрофа.

3. Драгомилов А. Г., Маш Р. Д. Биология 8 М.: ВЕНТАНА-ГРАФ

1. Колесов Д. В., Маш Р. Д., Беляев И. Н. Биология 8 М.:Дрофа - с. 49, задания и вопрос 1.

2. Что входит в мочевыделительную систему?

3. Что входит в пищеварительную систему?

4. Подготовьте реферат об одной из систем органов.

Организм - это исторически сложившаяся целостная, все время меняющаяся система, имеющая свое особое строение и различие, способная к обмену веществ с окружающей средой, к росту и размножению Организм живет лишь в определенных условиях окружающей среды, к которым он приспособлен.

Организм построен из отдельных частных структур - органов, тканей и тканевых элементов, объединенных в единое целое.

В процессе эволюции живых существ возникли сначала неклеточные формы жизни (белковые «монеры», вирусы и т. п.), затем клеточные формы (одноклеточные и простейшие многоклеточные организмы). При дальнейшем усложнении организации отдельные части организмов стали специализироваться на выполнении отдельных функций, благодаря которым организм приспосабливался к условиям своего существования. В связи с этим из неклеточных и клеточных структур стали возникать специализированные комплексы этих структур - ткани, органы и, наконец, комплексы органов - системы.

Отражая этот процесс дифференцировки, организм человека содержит в своем теле все эти структуры. Клетки в организме человека, как и всех многоклеточных животных, существуют только в составе тканей.

ЦЕЛОСТНОСТЬ ОРГАНИЗМА

Организм - это живая биологическая целостная система, обладающая способностью к самовоспроизведению, саморазвитию и самоуправлению. Организм - это единое целое, причем «высшая форма целостности» (К. Маркс). Организм проявляет себя как единое целое в различных аспектах.

Целостность организма, т. е. его объединение (интегрирование), обеспечивается, во-первых: 1) структурным соединением всех частей организма клеток, тканей, органов, жидкостей и др.); 2) связью всех частей организма при помощи: а) жидкостей, циркулирующих в его сосудах, полостях и пространствах (гуморальная связь, humor - жидкость), б) нервной системы, которая регулирует все процессы организма (нервная регуляция).

У простейших одноклеточных организмов, не имеющих еще нервной системы (например, амебы), имеется только один вид связи - гуморальная. С появлением нервной системы возникают два вида связи - гуморальная и нервная, причем по мере усложнения организации животных и развития нервной системы последняя все больше «овладевает телом» и подчиняет себе все процессы организма, в том числе и гуморальные, в результате чего создается единая нейрогуморальная регуляция при ведущей роли нервной системы.

Таким образом, целостность организма достигается благодаря деятельности нервной системы, которая пронизывает своими разветвлениями все органы и ткани тела и которая является материальным анатомическим субстратом объединения (интеграции) организма в единое целое наряду с гуморальной связью.


Целостность организма заключается, во-вторых, в единстве вегетативных (растительных) и анимальных (животных) процессов организма.

Целостность организма заключается, в-третьих, в единстве духа и тела, единстве психического и соматического, телесного. Идеализм отрывает душу от тела, считая ее самостоятельной и непознаваемой. Диалектический материализм считает, что нет психики, отделенной от тела. Она является функцией телесного органа - мозга, представляющего наиболее высокоразвитую и особым образом организованную материю, способную мыслить. Поэтому «нельзя отделить мышление от материи, которая мыслит».

Таково современное понимание целостности организма, строящееся на принципах диалектического материализма и его естественнонаучной основы - физиологического учения И. П. Павлова.

Взаимоотношение организма как целого и его составных элементов. Целое - есть сложная система взаимоотношения элементов и процессов, обладающая особым качеством, отличающим его от других систем, часть-это подчиненный целому элемент системы.

Организм как целое - нечто большее, чем сумма его частей (клеток, тканей, органов). Это «большее» - новое качество, возникшее благодаря взаимодействию частей в процессе фило - и онтогенеза. Особым качеством организма является способность его к самостоятельному существованию в данной среде. Так, одноклеточный организм; например, амеба) обладает способностью к самостоятельной жизни, а клетка, являющаяся частью организма (например, лейкоцит), не может существовать вне организма и извлеченная из крови погибает. Только при искусственном

поддержании определенных условий могут существовать изолированные органы и клетки (культура тканей). Но функции таких изолированных клеток не тождественны функции клеток целостного организма, поскольку они выключены из общего обмена с другими тканями.

Организм как целое играет ведущую роль в отношении своих частей, выражением чего является подчиненность деятельности всех органов нейрогуморальной регуляции. Поэтому изолированные от организма органы не могут выполнять те функции, которые присущи им в рамках целого организма. Этим объясняется трудность пересадки органов. Организм же как целое может существовать и после утраты некоторых частей, о чем свидетельствует хирургическая практика оперативного удаления отдельных органов и частей тела (удаление одной почки или одного легкого, ампутации конечностей и т. п.).

Подчиненность части целому не абсолютна, так как часть обладает относительной самостоятельностью.

Обладая относительной самостоятельностью, часть может влиять на целое, о чем свидетельствуют изменения всего организма при заболевании отдельных органов.

Орган (organon - орудие) представляет собой исторически сложившуюся систему различных тканей (нередко всех четырех основных групп), из которых одна или несколько преобладают и определяют его специфическое строение и функцию.

Например, в сердце имеется не только исчерченная мышечная ткань, но также и различные виды соединительной ткани (фиброзная, эластическая),


элементы нервной (нервы сердца), эндотелий и гладкие мышечные волокна (сосуды). Однако преобладающей является сердечная мышечная ткань, свойство которой (сократимость) и определяет строение и функцию сердца как органа сокращения.

Орган является целостным образованием, имеющим определенные, присущие только ему форму, строение, функцию, развитие и положение в организме.

Некоторые органы построены из множества сходных по структуре образований, состоящих в свою очередь из различных тканей. Каждая такая часть органа имеет все необходимое для осуществления функции, характерной для органа. Например, ацинус легкого представляет собой малую часть органа, но в нем представлены эпителий, соединительная ткань, гладкая мышечная ткань в стенках сосудов, нервная ткань (нервные волокна). В ацинусе осуществляется основная функция легкого - газообмен. Такие образования носят название структурно-функциональной единицы органа.

Все живые организмы в природе состоят из одинаковых уровней организации, это общая для всех живых организмов характерная биологическая закономерность.
Выделяют следующие уровни организации живых организмов - молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический, биосферный.

Рис. 1. Молекулярно-генетический уровень

1. Молекулярно-генетический уровень. Это наиболее элементарный характерный для жизни уровень (рис. 1). Как бы сложно или просто ни было строение любого живого организма, они все состоят из одинаковых молекулярных соединений. Примером этого являются нуклеиновые кислоты, белки, углеводы и другие сложные молекулярные комплексы органических и неорганических веществ. Их называют иногда биологическими макро- молекулярными веществами. На молекулярном уровне происходят различные процессы жизнедеятельности живых организмов: обмен веществ, превращение энергии. С помощью молекулярного уровня осуществляется передача наследственной информации, образуются отдельные органоиды и происходят другие процессы.


Рис. 2. Клеточный уровень

2. Клеточныйуровенъ. Клетка является структурной и функциональной единицей всех живых организмов на Земле (рис. 2). Отдельные органоиды в составе клетки имеют характерное строение и выполняют определенную функцию. Функции отдельных органоидов в клетке взаимосвязаны и выполняют единые процессы жизнедеятельности. У одноклеточных организмов (одноклеточные водоросли и простейшие) все жизненные процессы проходят в одной клетке, и одна клетка существует как отдельный организм. Вспомните одноклеточные водоросли, хламидомонады, хлореллу и простейших животных - амебу, инфузорию и др. У многоклеточных организмов одна клетка не может существовать как отдельный организм, но она является элементарной структурной единицей организма.


Рис. 3. Тканевый уровень

3. Тканевый уровень. Совокупность сходных по происхождению, строению и функциям клеток и межклеточных веществ образует ткань. Тканевый уровень характерен только для многоклеточных организмов. Также отдельные ткани не являются самостоятельным целостным организмом (рис. 3). Например, тела животных и человека состоят из четырех различных тканей (эпителиальная, соединительная, мышечная, нервная). Растительные ткани называются: образовательная, покровная, опорная, проводящая и выделительная. Вспомните строение и функции отдельных тканей.


Рис. 4. Органный уровень

4. Органный уровень. У многоклеточных организмов объединение нескольких одинаковых тканей, сходных по строению, происхождению и функциям, образует органный уровень (рис. 4). В составе каждого органа встречается несколько тканей, но среди них одна наиболее значительная. Отдельный орган не может существовать как целостный организм. Несколько органов, сходных по строению и функциям, объединяясь, составляют систему органов, например пищеварения, дыхания, кровообращения и т. д.


Рис. 5. Организменный уровень

5. Организменный уровень. Растения (хламидомонада, хлорелла) и животные (амеба, инфузория и т. д.), тела которых состоят из одной клетки, представляют собой самостоятельный организм (рис. 5). А отдельная особь многоклеточных организмов считается как отдельный организм. В каждом отдельном организме происходят все жизненные процессы, характерные для всех живых организмов, - питание, дыхание, обмен веществ, раздражимость, размножение и т. д. Каждый самостоятельный организм оставляет после себя потомство. У многоклеточных организмов клетки, ткани, органы и системы органов не являются отдельным организмом. Только целостная система органов, специализированно выполняющих различные функции, образует отдельный самостоятельный организм. Развитие организма, начиная с оплодотворения и до конца жизни, занимает определенный промежуток времени. Такое индивидуальное развитие каждого организма называется онтогенезом. Организм может существовать в тесной взаимосвязи с окружающей средой.


Рис. 6. Популяционно-видовой уровень

6. Популяционно-видовой уровень. Совокупность особей одного вида или группы, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида, составляет популяцию. На популяционном уровне осуществляются простейшие эволюционные преобразования, что способствует постепенному появлению нового вида (рис. 6).


Рис. 7 Биогеоценотический уровень

7. Биогеоценотический уровень. Совокупность организмов разных видов и различной сложности организации, приспособленных к одинаковым условиям природной среды, называется биогеоценозом, или природным сообществом. В состав биогеоценоза входят многочисленные виды живых организмов и условия природной среды. В природных биогеоценозах накапливается энергия и передается от одного организма к другому. Биогеоценоз включает неорганические, органические соединения и живые организмы (рис. 7).


Рис. 8. Биосферный уровень

8. Биосферный уровень. Совокупность всех живых организмов на нашей планете и общей природной среды их обитания составляет биосферный уровень (рис. 8). На биосферном уровне современная биология решает глобальные проблемы, например определение интенсивности образования свободного кислорода растительным покровом Земли или изменения концентрации углекислого газа в атмосфере, связанные с деятельностью человека. Главную роль в биосферном уровне выполняют "живые вещества", т. е. совокупность живых организмов, населяющих Землю. Также в биосферном уровне имеют значение "биокосные вещества", образовавшиеся в результате жизнедеятельности живых организмов и "косных" веществ (т. е. условий окружающей среды). На биосферном уровне происходит круговорот веществ и энергии на Земле с участием всех живых организмов биосферы.

Уровни организации жизни. Популяция. Биогеоценоз. Биосфера.

  1. В настоящее время выделяют несколько уровней организации живых организмов: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический и биосферный.
  2. На популяционно-видовом уровне осуществляются элементарные эволюционные преобразования.
  3. Клетка - самая элементарная структурная и функциональная единица всех живых организмов.
  4. Совокупность сходных по происхождению, строению и функциям клеток и межклеточных веществ образует ткань.
  5. Совокупность всех живых организмов на планете и общей природной среды их обитания составляет биосферный уровень.
    1. Назовите по порядку уровни организации жизни.
    2. Что такое ткань?
    3. Из каких основных частей состоит клетка?
      1. Для каких организмов характерен тканевый уровень?
      2. Дайте характеристику органного уровня.
      3. Что такое популяция?
        1. Дайте характеристику организменному уровню.
        2. Назовите особенности биогеоценотического уровня.
        3. Приведите примеры взаимосвязанности уровней организованности жизни.

Заполните таблицу, показывающую структурные особенности каждого уровня организации:

Порядковый номер

Уровни организации

Особенности

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!